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Abstract

This dissertation contributes novel theoretical results that enable the use of efficient

optimization algorithms for the design of energy and manufacturing systems with high

operational flexibility. Operational flexibility is a central theme of the smart grid and smart

manufacturing paradigms because it enables systems to optimally adapt to highly dynamic

and uncertain operating environments. Such environments are increasingly prevalent in the

energy and manufacturing industries due to factors such as the increasing use of variable

renewable energy resources (e.g., wind and solar) and the potential benefits of responding

quickly to variations in product demands, real-time electricity markets, etc. For systems

such as microgrids, combined heat and power plants, multiproduct chemical plants, and

biorefineries, such flexibility has the potential to provide huge economic and environmental

benefits. However, it also requires systems to make substantial changes in their operating

conditions over very short-time scales, including discrete changes in their operating modes

of process equipment (e.g., on/off) or the portfolio of products being produced.

Designing systems with such operational flexibility requires consideration of the

short-term operational details (e.g., minutes to hours) and future uncertainties that will af-

fect system’s performance over its entire lifetime (e.g., decades). This gives rise to a complex

optimization problem called integrated design and operation under uncertainty. This prob-

lem is complex mainly because the long-term design decisions of interest are tightly coupled

with a very large number of short-term operational decisions that must be made over many

operational periods and under significant uncertainty. Moreover, these operational decision

are mixed-integer decisions, which are particularly challenging for optimization, because
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they are used to model both discrete and continuous changes in operations. Unfortunately,

such problems cannot be solved both accurately and efficiently by standard mathematical

programming approaches without major simplifications. At the same time, simplifications

that are computationally tractable significantly reduce the level of operational detail that

can be captured by the optimization model, which often result in system designs that are

sub-optimal or even infeasible for real operations.

An alternative approach, which we refer to as the simulation-based optimization

(SO) approach, is to evaluate candidate system designs using a stochastic simulation of the

system’s operations over all operational periods and in multiple uncertain scenarios. The

design problem is then solved by optimizing the output of this simulation with respect to

the design decisions. This approach is scalable to models with much more operational detail

in terms of the number of operational periods and the number of uncertain scenarios con-

sidered, both of which are essential for representing operational flexibility. However, this

approach results in highly complex and discontinuous optimization problems due to the

discrete decisions that are made within the simulation to represent short-term operations.

Hence, solving this formulation usually requires heuristic gradient-free optimization algo-

rithms that are extremely inefficient for high-dimensional problems and offer no theoretical

guarantee of finding an optimal design.

To address these challenges, this dissertation presents novel theoretical results that

enable the SO formulation to be solved much more efficiently using gradient-based local

optimization algorithms. In contrast to the common practice of approximating the cost

function as a finite sum of costs associated with discrete uncertain scenarios (i.e., sample-

average approximation), we instead model the cost as the true expected value over all pos-

sible scenarios described by a continuous probability distribution. In this context, our key

insight is that averaging over uncertain scenarios is a smoothing operation, and hence this

expected cost can be a smooth function of the design decisions despite the fact that sample

average approximations are discontinuous. When this is true, the SO formulation can be

solved efficiently using gradient-based optimization methods. In Chapter 2, we develop this

iii



approach assuming that the operational decisions within the simulation are made with a

logical control policy that is specified a priori. Specifically, we consider a type of controller

called an energy management policy that is in common use in microgrid simulations. We

then derive and rigorously prove two sets of sufficient conditions on the energy management

policy under which the expected cost of the simulation is smooth. We demonstrate that

these conditions are easily verifiable and often satisfied in practical applications. Finally,

we implement different gradient-based algorithms, including a custom-made stochastic gra-

dient descent algorithm, to solve the SO formulation for a representative example problem

and show that this approach significantly outperforms derivative-free algorithms in both

computational speed and solution quality.

In Chapter 3, we extend this approach to address a much more general mathe-

matical programming formulation of the integrated design and operation problem called

multistage stochastic programming (MSP). We argue that this general MSP formulation

can be accurately approximated by making all operational decisions using a parameter-

ized mixed-integer decision rule, which reduces the MSP to an SO problem that can be

solved efficiently as in Chapter 2. We then extend the smoothness conditions developed in

Chapter 2. To develop this approach, we first propose a very general class of mixed-integer

decision rules that is flexible enough to approximate near-optimal operational decisions for

general MSPs, and then extend the sufficient conditions developed in Chapter 2 to rig-

orously establish smoothness of the resulting SO approximation. The resulting sufficient

conditions are significantly more general than those in Chapter 2, and therefore apply to

a much larger class of problems. We then show that these conditions are often satisfied

in practice, and that they can always be made to hold by randomizing the decision rule.

Finally, we implement different gradient-based algorithms to solve the SO approximation

for a representative example problem and show that this approach significantly outperforms

derivative-free algorithms in both computational speed and solution quality. Overall, the

novel theoretical results developed in this dissertation are shown to enable efficient solution

of significantly larger integrated design and operation problems than could be solved by
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existing approaches.
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Chapter 1

Introduction

This dissertation concerns the development of novel optimization algorithms for

solving the problem of integrated process design and operation under uncertainty. Our

main motivation for considering this class of problems is to address the optimal design of

highly flexible manufacturing and energy systems. Flexible systems are defined here as

systems with the ability to make substantial changes in their operating mode, including

discrete changes in the assignment of equipment to tasks or the portfolio of products being

produced, over short time-scales in order to accommodate or exploit variability in the

systems operating environment. Variability in the operating environment may arise from

the use of variable renewable power sources or feedstocks, participation in real-time markets,

contingencies, etc. For such systems, making optimal design decisions requires detailed

consideration of how the system will operate under uncertain future conditions therefore,

the design decisions are coupled with operational decisions, leading to the class of integrated

design and operation problems considered here.
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1.1 Motivation for Flexible Manufacturing and Energy Sys-

tems

By some estimates, the global energy demand is expected to increase by a stagger-

ing 53% from 2008 to 2035 [1]. Meeting this rapidly increasing demand is an outstanding

challenge that is aggravated by the environmental and economic concerns surrounding tradi-

tional energy generation technologies, which are primarily based on fossil fuels [2]. Tackling

this challenge requires a paradigm shift towards more energy efficient operations and the

integration of cheap renewable resources in both the power generation and manufacturing

industries [3, 4]. Enabling energy and manufacturing processes with much higher oper-

ational flexibility is essential for making this shift [5, 6]. Systems with this feature can

achieve more economical and efficient operations because it endows them with the ability

to optimally adapt to highly dynamic and uncertain operating conditions [5, 7, 8] that are

increasingly prevalent in the power and manufacturing industries [8–10].

In the power generation industry, renewable energy from wind and solar resources

is projected to be the fastest growing contributor to U.S. electricity generation, increasing

by nearly 120% from 2015 to 2040 [11]. However, despite their promise of enormous socio-

economic benefits, wind and solar are geographically distributed and highly intermittent

(i.e., variable and uncertain), with unpredictable fluctuations occurring over time scales

from minutes to hours [12]. This makes their integration at large scales tremendously

challenging because the existing power grid is designed for centralized on-demand power

generation and has slow dynamic response capabilities [3]. To address this challenge, the

power industry is considering major transformations, including the adoption of distributed

microgrids and other smart grid technologies [13–15], with the potential to enable more

flexible and efficient operations. Microgrid systems are autonomous power systems capable

of operating in isolation from the grid by pairing local loads and resources. Thus, they

are widely regarded as a key technology for enabling efficient integration of distributed

renewable energy [3]. However, designing microgrids that can deal with the highly variable
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and uncertain nature of wind and solar resources is still a challenge. Specifically, dealing

with this intermittency requires microgrids to coordinate multiple generation, storage, and

back-up units (photovoltaics, wind turbines, diesels, batteries, hydrogen storage, etc.) and

to make real-time decisions about which of these units to use based on the current demand

and renewable resource availability [16, 17]. These decisions consist of discrete statuses

(e.g., on/off) and power set-points that must made on the order of minutes to hours for each

generator, storage unit, and controllable load [12]. Moreover, these decisions must be made

while also enforcing operational limits on each unit (e.g., minimum uptime/downtime and

ramp up/down constraints). Therefore, making these decisions requires solving a complex

online control problem (e.g., unit commitment [18]) to coordinate these units so that the

demand is met reliably and at the lowest cost despite the fluctuations in wind and solar

power generation. However, although these features have the potential to enable microgrids

to operate flexibly, the adoption of microgrids is currently hindered by the fact that flexible

operations are impractical to achieve unless considered during the design stage of the system

[19, 20]. This is true because operational flexibility is a function of the system design. To see

this, suppose for example a microgrid system experiences a generator unit failure, a sudden

drop in renewable energy generation, or a sudden increase in power demand. To cover such

situations, the system needs to capitalize on back-up generators or energy storage units

(thermal or battery) [5, 9, 21, 22]. But, these units must already be built in the system

design. Thus, design decisions are coupled with operational decisions that have to be made

by solving the complex online control problem. Unfortunately, this gives rise to a complex

integrated system design and operation problem that cannot be solved both accurately

and efficiently by the existing optimization approaches. Efficient approaches often require

making major simplifications of operational details, which leads to very expensive, overly

conservative designs, hindering advancements in the adoption of microgrids. The novel

approaches developed in this dissertation will enable the efficient solution of this problem

to achieve more economical designs and therefore, to advance the adoption of microgrid

systems.
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Operational flexibility is also a critical feature of major transformations, under the

umbrella of smart manufacturing technologies [23] being considered in the manufacturing

industry, which accounts for more than 30% of global energy consumption [24]. By some

estimates, smart manufacturing technologies could save a staggering $10–15 trillion globally

by 2035, including $7–25 billion/year in energy costs alone [25, 26]. However, the realiza-

tion of this promise will require more flexible operations in systems such as multiproduct

chemical manufacturing plants, bio-refineries, and smart utility systems for energy-intensive

chemical manufacturing processes. Multiproduct chemical plants and bio-refineries consume

low-value raw materials/feedstock to produce multiple high-value products. The ability to

enable operational flexibility in these systems, e.g., by increasing their production ramp

up/down capabilities, can potentially endow them the ability to adapt to short-term fluc-

tuations in product demands, market prices, raw material/feedstock availability, processing

times, and process yields, which can result in significant economic and efficiency gains [27–

32]. Flexible smart utility systems can also offer similar benefits. For example, combined

heat and power (CHP) systems produce power while simultaneously recovering heat, a

byproduct that usually goes to waste. This heat can then be used to make other useful

products, such as steam at different pressures [33]. This heat recovery allows CHPs to boost

their energy efficiency by up to 40% relative to separate production of heat and power [34].

The ability to design flexible CHP systems (e.g., CHPs that can quickly ramp up/down

their power output) can potentially enable them to be used as highly efficient smart utility

systems that endows energy-intensive chemical processes (e.g., pulp and paper mills) the

ability to exploit volatile electricity prices in real-time [33, 35]. This can lead to significant

economic savings because these processes can use the CHP when prices are high and can use

power from the grid when prices are low. However, as in the case of microgrids, the design

of flexible multiproduct chemical plants, bio-refineries, and smart utility systems requires

coordination of multiple components in order to accommodate multiple resource inputs and

product outputs, both of which can be highly variable and uncertain due to external or

internal fluctuations [5, 15, 36]. For example, multiproduct chemical plants require multi-
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ple multipurpose processing units to accommodate various product demands and achieve

optimal operation. However, the adaptability of these plants to short-term fluctuations in,

for example product demands, depends heavily on their ability to quickly decide appropri-

ate levels of their production rates and which of the processing units to use in each task

involved in the production of each product. This results in a complex operational problem

(e.g., adaptive/reactive scheduling) [10, 36]. At the same time, operational adaptability is

a function of the system design. To see this, suppose an unpredicted increase in a product

demand occurs during the operation of some process in the plant. To accommodate this

increase, the process must adapt by ramping up its production. However, it cannot ramp

up beyond its capacity, which is fixed by its design. Therefore, system design decisions are

coupled with the complex operations, which leads to an unresolved integrated design and

operation problem. The inability of existing approaches to accurately solve this problem

leads to system designs that are unable to adapt in uncertain and dynamic operating condi-

tions. The efficient approaches developed in this dissertation to solve this problem will lead

to the effective design of flexible systems, which will immensely contribute to the realization

of the promise of smart manufacturing technologies.

From these discussions, it is clear that smart manufacturing and energy systems have

huge potential to address environmental and economic concerns surrounding traditional

manufacturing and energy generation technologies. However, the ability to design systems

that can operate flexibly in dynamic and uncertain environments is critically important.

Unfortunately, designing such systems requires coordination of multiple components which

increases the complexity of system operations that must be coupled with design decisions.

This leads to a complex integrated design and operation problem that remains unresolved,

hindering the advancement in the design and adoption of flexible systems. This dissertation

addresses this issue by developing efficient solution approaches for complex integrated design

and operation problems.
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1.2 Review of Existing Approaches and Challenges

The main objective of this dissertation is to develop novel mathematical modeling

and optimization algorithm to advance the design (e.g., process unit sizing and technology

selection) of highly flexible manufacturing and energy systems. As discussed in the previous

section, this requires making design decisions with the consideration of both the future un-

certainties that will affect system operations. Unfortunately, this gives rise to an integrated

design and operation problem with the following features that make standard mathematical

programming formulations practically intractable and therefore raising the need for novel

formulations and optimization strategies for its solution:

(i) Relevant operational details and uncertainties often occur on time-scales much shorter

than the lifetime of a system [15, 36–38]. For example, the value of an energy storage

system with a lifetime of 10 years may depend critically on its ability to enhance

responsiveness to hourly variations in electricity pricing or renewable power generation

[36, 39]. This results in problem formulations with very many operational time periods

(e.g., hundreds or thousands) in each of which operational decisions must be made.

(ii) Many critical operational decisions are discrete (e.g., adaptive scheduling and unit

commitment) [10, 18, 36], resulting in problem formulations with mixed-integer deci-

sions.

(iii) Many important uncertainties are best described by continuous random variables with

significant variance, resulting in problem formulations that are not easily approximated

using a few discrete uncertainty scenarios (e.g., demands, natural resource availability,

process yields, etc.) [40–42].

The integrated design and operation under uncertainty is a minimization problem

that aims to find a system design (i.e., component sizes and technology selection) that

minimizes the investment cost plus the expected value of the sum of operational costs that

the system will incur in each operational time period/stage (e.g., fuel cost associated with
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the decision to run a diesel generator in each hour) over its entire lifetime (e.g., decades).

Notably, the values of these stage costs depend on the realized value of the uncertain inputs.

For example, a low power demand realization requires less power from a diesel generator,

which gives a lower fuel cost. The opposite happens for a high demand realization which re-

quires more fuel, resulting in a higher fuel cost. The expected value accounts for all possible

future scenarios, and hence is an appropriate measure of system performance. Therefore,

the problem of integrated design and operation under uncertainty is typically formulated

using stochastic models expressed in the framework of either mathematical programming

or simulation-optimization.

1.2.1 Stochastic Mathematical Programming Approaches

The integrated design and operation problem can be formulated using two main

mathematical programming models, namely multistage stochastic programs (MSPs) and

stochastic multilevel programs (SMLPs), both with mixed-integer operational decisions in

all periods. Note that, in the settings of the integrated problems we consider in this dis-

sertation, a stage in the term multistage and a level in the term multilevel pertains to an

operational period. In both formulations the operational decisions are recourse decisions,

meaning that they are made after an uncertainty realization has occurred, as opposed to

the design decisions which are made without knowledge of the uncertainty. The objective

function in both of these models consists of the investment cost and the expected value

of the sum of the operational costs in all operational periods. The minimization of this

objective with respect to the design decisions is subject to operational constraints that

include a dynamic model that represents how the system state (e.g., product inventory

level, battery state of charge) evolves over each period, and flexibility constraints such as

minimum uptime/downtime and ramp up/down constraints for units in the system. Both

models allow some of the operational constraints to be enforced in a probabilistic sense as

chance constraints. In general, however, MSPs are distinct from SMLPs in that SMLPs

include at least one optimization sub-problem in their constraints while MSPs do not. For
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the integrated problems of interest here, MSPs will have as many stages as the number

of operational periods and SMLPs will include an auxiliary optimization sub-problem for

each operational period, while MSPs do not. Furthermore, in MSP models, the recourse

decisions are free, meaning that they are not enforced by some control law. In contrast,

SMLPs enforce a control law which is often represented by the auxiliary sub-problem. In

fact, the auxiliary sub-problem is often introduced in order to represent an advanced con-

trol strategy that will be used to make operational decisions once the system is built. For

example, model predictive control (MPC) is an advanced control strategy that is widely

used for the operation of energy systems such as microgrids and CHPs [43–45] and for the

dynamic control of multi-product chemical manufacturing processes [36, 46, 47].

However, despite this difference, MSP and SMLP models have two more important

features in common. Specifically, in both models, all of the operational decisions in all of the

operational periods are taken as optimization variables in the overall problem. Moreover,

to model system adaptability in uncertain conditions, these operational variables naturally

take different values for different uncertainty scenarios, making them functions of the un-

certainty. An obvious unfavorable consequence of this is that the optimization problems

resulting from both these formulations scale in the number of operational periods and un-

certainty scenarios considered, both of which can be extremely large due to features (i) and

(iii). Combined with nonlinearities in system models and the presence of integer operational

decisions (feature (ii)), the standard scenario-based solution paradigm (i.e., sample average

approximation), which consists of sampling discrete scenarios and co-optimizing design de-

cisions with operational decisions for every stage and every scenario, easily results in huge

mixed-integer nonlinear programs (MINLPs) (e.g., hundreds of thousands of optimization

variables) that are far beyond the capabilities of existing optimization solvers.

In some special cases (e.g., linear models and no integer decisions), decomposition

and reformulation techniques exist that can help alleviate the computational burden of these

models. Moreover, a few rigorous decomposition methods have recently been developed for

general models with mixed-integer decisions and non-convexities [48–50]. Unfortunately,

8



these are still nascent and have significant limitations that prohibit their use for problems

with features (i)–(iii) (e.g., their computational cost is relatively high; they only apply to

MSPs with two-stages; they impose restrictions on which stage/level can have continuous

or integer decisions [48, 51–53]). Furthermore, SMPLs can be transformed into single-level

optimization problems using reformulations that replace the lower-level sub-problems by

their KKT conditions [54–57] or their explicit multiparametric solutions [58–62]. However,

the KKT reformulation does not work when the sub-problems are non-convex because KKT

conditions are necessary but not sufficient for optimality in these cases. The sub-problems

are non-convex in the integrated problems of interest here because of feature (ii), which

dictates the presence of discrete operational decisions in the sub-problem (e.g., hourly de-

cisions to turn generators on/off by solving a unit commitment optimization sub-problem

[43]). Moreover, the multiparametric programming approach does not scale well to prob-

lems with a large number of parameters. This is true because the number of equations and

inequalities characterizing the multiparametric solution can potentially grow exponentially

in the number of problem parameters [10, 63], leading to prohibitively large reformulations.

In our case, a large number of variables parameterizing each sub-problem (e.g., system de-

sign variables, system state variables, and uncertain variables) is likely to occur due to the

complexity of flexible manufacturing and energy systems as described above (e.g., multiple

source of uncertainties and multiple process units).

In the light of these issues, tractable approximations are often achieved through ag-

gressive simplifications of features (i)–(iii). For MSPs, such simplifications include lumping

operational periods into a few [40, 64]; relaxing integrality of the operational decisions [65,

66]; using deterministic approximations [37, 65] that make operational decisions with per-

fect foresight rather than under uncertainty; using linearized rather than realistic nonlinear

models [15, 37]; aggregating uncertainty scenarios in each operational period into a few [67,

68]; decoupling consecutive operational periods using static process models [64, 69]; etc.

Notably, similar simplifications are often adopted for SMLPs [54–57]. Critically, although

these simplifications may significantly reduce the size of the problem and are appropriate in
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some applications, they are not appropriate for the problems of interest here because they

degrade the optimization model in exactly the aspects that are most essential for assessing

operational flexibility and system responsiveness in dynamic and uncertain environments.

Thus, these simplifications may lead to system designs that are highly sub-optimal or even

infeasible in real operating conditions. Consequently, simulation-optimization approaches

have been considered in the literature as an alternative to formulate integrated problems in

an efficient way that retains the critical operational flexibility details in these problems.

1.2.2 Decision Rule-Embedded Simulation-Optimization (DR-SO) Ap-

proaches

Simulation-optimization (SO) approaches are widely regarded as the most general

and natural approaches to formulate complex problems of integrated design and operation

[70–73]. A typical SO formulation consists of an outer optimization problem over the

design decisions and an inner stochastic time series simulation that is used to evaluate

the expected operational cost and constraints of the outer problem. For any fixed system

design, the simulation mimics how the system will be operated once it is designed and

implemented. In practice, the systems we consider are operated using a decision rule (DR).

Loosely speaking, a DR can be thought of as an explicit expression with a fixed functional

form that is executed using as input the available data in the current operational period (e.g.,

the uncertainty realization and system state) to produce values of the operational decisions

in that period. For example, an energy management policy (EMP) is a set of logical rules

that are typically used to determine when and how each component in a microgrid system is

used [16]. A typical EMP rule involves setting thresholds on the system state (i.e., battery

state of charge) and the available net power (i.e., difference between power demand and

power from renewable resources such as wind and solar) and deciding on/off statuses of

other components (e.g., generators) based on whether those thresholds are exceeded or

not. Besides microgrid systems, DRs are used in other practical applications. For example,

hedging rules are used in water resource management [74] and dispatching rules are used

10



in flexible manufacturing systems [75, 76]. To mimic this practical DR-based operation for

a fixed system design and uncertainty scenario (i.e., a time series of sampled uncertainty

in each period), systems of interest are typically simulated using a time-stepping process

that sequentially executes the DR in every operational period to determine mixed-integer

operational decisions. The latter are then used to compute the operational costs (e.g., fuel

cost for running a generator). Such a process constitutes one stochastic simulation that

can be performed multiple times to approximate the expected operational cost using the

standard sample average.

Compared to the MSP and SMLP formulations, the critical advantage of the

decision-rule embedded simulation-optimization (DR-SO) formulation is its high scalability

to problems with very many operational periods and uncertainty scenarios. In particular,

specifying a DR can be regarded as an offline specification of the operational decisions for

each period and scenario, which are all optimization variables in the MSP and SMLP for-

mulations. Therefore, the size of the outer optimization problem in the DR-SO formulation

is completely independent of the number of operational periods and uncertainty scenarios.

Thus, in contrast to the MSP and SMLP models that would have hundreds of thousands of

decision variables due to features (i)–(iii), the DR-SO formulation will have very few opti-

mization variables, including only the design decisions and a few more variables that might

be desirably added to parametrize the DR in attempt to enhance the quality of operational

decisions that it provides. Thus, the DR-SO formulation can accommodate relatively many

scenarios an operational periods as required by features (i) and (iii). This claim is further

justified by the fact that the computational cost of each stochastic simulation scales only

linearly in the number of operational periods and the computational cost of a sample average

approximation of the expected cost increases linear in the number of scenarios considered.

Furthermore, the DR-SO formulation offers tremendous modeling flexibility because it can

readily accommodate realistic nonlinear and nonconvex models, all of which would further

complicate the MSP and SMLP formulations. Hence, the DR-SO formulation is seemingly

more likely to provide higher-quality designs since many of the aggressive simplifications
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required to make MSP and SMLP formulations tractable are no longer necessary. In fact,

on the basis of these advantages, the DR-SO formulation is the backbone of many popular

energy systems sizing softwares such as HOMER [73].

However, although decision-rule embedded simulations are undeniably well-suited

for effective modeling of features (i)–(iii), the solution of DR-SO problems is not well ad-

dressed by existing solution approaches. This is due to the fact that the outer optimiza-

tion problem in the DR-SO formulation is often extremely complex despite being low-

dimensional. Specifically, the critical drawback of the DR-SO approach is that the integer

operational decisions made by the embedded DR make the simulated cost and constraint

functions discontinuous with respect to the outer optimization variables (i.e., design de-

cisions and DR parameters) for any fixed uncertainty scenario. This is true because the

DR is a function of these decision variables and so, a perturbation of any of these vari-

ables may cause the DR output to jump from one discrete operational decision value to

a different discrete value. Clearly, this jump will cause a discontinuity in the operational

cost. Since this may occur for every operational period and every simulated scenario, the

number of such discontinuities can be huge because of features (i)–(iii). Consequently, a

sample average approximation (SAA) makes the DR-SO problem extremely irregular and

difficult to solve. As a result, in practice, DR-SO are commonly solved using human-guided

trial-and-error approaches, or by exhaustively evaluating a set of candidate designs, as is

done in HOMER [73]. Furthermore, population-based heuristic algorithms (e.g., particle

swarm optimization, genetic algorithms, tabu search, etc.) are used extensively in prac-

tice [72, 77, 78]. This is due to the fact that these approaches are black-box approaches,

meaning that the optimizer simulates candidate system designs, but without exploiting any

mathematical structure of the simulation model. Consequently, these approaches are ex-

tremely easy to implement and are broadly applicable, even for complex simulations with

highly discontinuous outputs. Unfortunately, however, these approaches are not guaranteed

to find an optimal solution finitely. Moreover, since these approaches do not use deriva-

tive information which, whenever available, is critical in guiding the solution search, they
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often suffer from slow convergence compared to gradient-based algorithms [79, 80]. Thus,

in practice, derivative-free methods often require prohibitive computational effort and may

locate sub-optimal solutions, particularly for high dimensional problems [72, 78].

To summarize the discussion above, the DR-SO approach addresses many chal-

lenges associated with mathematical programing formulations highlighted above. However,

the outstanding issue we aim to address in this dissertation is that the presence of dis-

crete operational decisions makes DR-SO formulations highly discontinuous, making them

unsuited for gradient-based algorithms which are much more reliable and computationally

efficient relative to gradient-free approaches.

1.3 Thesis Contributions

The central insight we aim to lay out rigorously in this dissertation is that, despite

the fact that integer operational decisions unavoidably introduce many discontinuities in the

DR-SO problem through the actions of the DR in each time period and for any fixed finite

number uncertainty scenarios (i.e., SAA), the true expected-value over all possible scenarios

described by a continuous probability distribution might be nonetheless smooth. When the

smoothing happens, the overwhelming discontinuous character of the finite-sample SAA is

entirely eliminated. In this case, simulations will return stochastic estimates of the smooth

function rather than the discontinuous one. Therefore, the DR-SO problem is amenable

to stochastic gradient-based solution algorithms, which are expected to significantly out-

perform heuristic gradient-free approaches. However, despite that some smoothing may

occur due to the inherent smoothing property of expectation, this is not generally guar-

anteed. Overall, this dissertation is dedicated to the discovery of novel, easily verifiable,

non-restrictive, and sufficient conditions that will always guarantee smoothness of DR-SO

problems and the development of a general framework that capitalizes on the combination

of these conditions and the DR-SO formulation for a more effective solution of the other-

wise intractable MSP models. Our first contribution is given in Chapter 2 and consists of
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a set of sufficient conditions that always guarantee smoothness of DR-SO problems for a

special class of mixed-integer DRs commonly used for microgrid systems operations. The

second contribution of this dissertation is given in Chapter 3. In this chapter, we extend

the conditions developed in Chapter 2 to a much more general class of mixed-integer DRs.

The main objective of this chapter is to demonstrate that the application of DRs belonging

to the proposed class and satisfying the extended conditions endows the DR-SO approach

the ability to be used as a highly efficient solution approach for MSPs that are intractable

by any other means. These contributions are detailed in their respective chapters, but we

give a brief summary for each in the following subsections.

1.3.1 Smoothness of DR-SO Problems for Microgrids Application (Chap-

ter 2)

In Chapter 2, we consider the problem of integrated design and operation of micro-

grid energy systems under uncertain time-series of power demand and solar energy genera-

tion. This problem is formulated as a DR-SO and we adopt a typical microgrid simulation

paradigm in which mixed-integer operational decisions (e.g., on/off statuses and power set

points of each microgrid component) are made on a hourly basis over a year using a class

of threshold-type DRs called energy management policies (EMPs) [16]. The objective func-

tion of this problem consists of the capital cost for buying system components (e.g., PVs,

battery banks, and diesel generators) and the expected operational cost (e.g., fuel cost

and penalties for unmet demand) computed using the yearly randomized time series sim-

ulations. We first introduce the typical microgrid simulation as a discrete-time stochastic

hybrid system (DTSHS). This model is based on an EMP-type class of DRs consisting of

checking the signs of a set of smooth threshold functions that may depend arbitrarily on the

system state, the current uncertainty, and the design decision variables. Each of these signs

corresponds to a binary outcome which is directly related to the operation of the system.

In fact, one subset of these binary outcomes will represent the actual discrete operational

decisions (e.g., on/off statuses of generators) and the other subset will indicate operational
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events (e.g., battery overcharge, power surplus/power deficit) that are used in determining

other useful operational information (e.g., penalty cost for unmet demand or overcharging

a battery). DTSHSs emerge as a result of using these binary outcomes as inputs to the

system’s dynamic model responsible for updating system state in every hour of the year.

Consequently, the DR-SO formulation we consider involves an expected-value min-

imization subject to DTSHSs. It is important to note that the class of EMP-type DRs

we consider are discontinuous since their outcomes are binary sequences. Therefore, these

DRs cause many discontinuities in the SAA of the DR-SO problem, which then has to be

solved using heuristic gradient-free algorithms with well-known limitations. In the interest

of enabling more efficient optimization approaches, we consider the important question of

whether or not the expected-cost is a continuously differentiable function of the design de-

cision and the EMP rule parameters. Our findings in answering this question show that

the expected-value of the cost function is continuously differentiable under very general

conditions requiring that (1) the uncertain variables are continuously distributed, and (2)

the smooth threshold functions defining the EMP satisfy a set of non-degeneracy conditions

that we characterize theoretically. We demonstrate the verification of these conditions for

some representative microgrid models and we also highlight particular model features and

EMP rules that may lead to violations of these conditions. Finally, we present optimization

results for illustrative microgrid design and capacity expansion examples in which we show

that even an immature stochastic gradient-descent algorithm outperforms state-of-the-art

gradient-free approaches in both computational efficiency and solution quality.

1.3.2 The DR-SO Approach to Multistage Stochastic Programs (Chapter

3)

Chapter 3 extends the approach developed in Chapter 2 to address general MSP

formulations of the integrated design and operation problem in which a specific decision

rule is no longer specified as part of the problem statement. The key idea is to use a more

flexible general class of parameterized mixed-integer decision rules to obtain an accurate
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approximation of the original MSP in the form of a DR-SO problem. As discussed in the

previous sub-section, this approximation will be tractable provided that this class of DRs

results in a smooth DR-SO problem. The extensions of the results from Chapter 2 are

necessary because the class of DRs proposed there and the sufficient conditions developed

there impose many restrictions that limit their application to the general MSPs we con-

sider. For example, the conditions are violated by DRs defined by threshold functions that

enforce minimum uptime/downtime constraints. In practice, enforcing these constraints is

often required for some system units, but also enforcing them in the problem is essential

for representing operational flexibility. As our first contribution, we propose a general class

of mixed-integer DRs that is flexible in that it provides a general framework for modeling

many decision rules found in the literature. These include linear and nonlinear decision rules

found in the robust optimization literature [81–86], and logic controllers such as the EMP-

type rules considered in Chapter 2 for microgrid systems operations, hedging rules in water

resource management, and dispatching rules in flexible manufacturing [16, 74, 75]. The

basic structure of the proposed class of DRs uses the idea that mixed-integer operational

decisions (i.e., the recourse decisions) can be determined through a process that involves

a step consisting of checking the signs of a set of smooth threshold functions. Thus, this

class has some relation to the class proposed in Chapter 2. As our second contribution, we

develop a new set of sufficient conditions on the proposed class of DRs that guarantee con-

tinuous differentiability of the DR-SO problem. The new set of conditions are a relaxation

of the conditions developed in Chapter 2. Notably these new conditions are still only im-

posed on the threshold functions defining the DR. More importantly, the added relaxations

enable use of DRs with threshold functions that depend on discrete system states. Discrete

states are allowed by the general MSP model we consider and are typically required to en-

force operational flexibility constraints such as the minimum uptime/downtime constraints

which are usually enforced by a suitably constructed DR. Consideration of DRs involving

discrete states is not possible with the conditions developed in Chapter 2. Moreover, note

that smoothness of the DR-SO problem requires smoothness of both the expected value and
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chance constraints functions, all of which are part of the general MSP model we consider.

As our third contribution, we apply the new sufficient conditions to address smoothness of

chance constraints, which were not treated in Chapter 2. For our final contribution, we

provide a trivial, but systematic way to modify any DR of the proposed class such that the

resulting DR is free of any violations of the conditions developed in both Chapter 2 and 3.

Notably, although this modification guarantees that the conditions in Chapter 2 will always

hold, it relies on randomizing the DR with violations. Unfortunately, this randomization

might not be desirable in some important practical cases. For example, randomizing DRs

that enforce minimum uptime/downtime constraints will lead to the violation of these con-

straint with a non-trivial probability. However, the new conditions developed in Chapter

3 are able to prevent many of such undesirable randomizations. Using an illustrative two-

product manufacturing inventory system design example, we demonstrate the application

of these contributions. In particular, we show that significant improvements in the opti-

mization results are obtained with an algorithm that relies on differentiability of the DR-SO

problem as compared to state-of-the-art gradient-free algorithms.
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Chapter 2

Differentiability Conditions for

Stochastic Hybrid Systems with

Application to the Optimal Design

of Microgrids

2.1 Abstract

This chapter considers the regularity of expected value minimization problems sub-

ject to discrete-time stochastic hybrid systems. A primary motivation is the optimal de-

sign of microgrids subject to detailed operational simulations with renewable resources and

discrete dispatching. For such problems, hybrid behavior can make the cost function dis-

continuous for any fixed realization of uncertainty, which has led to the widespread use of

derivative-free optimizers with well known limitations. In contrast, we provide sufficient

conditions under which the expected value of the cost is continuously differentiable. We

verify these conditions for a simple example and show promising preliminary optimization

results using a stochastic gradient-descent method.
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2.2 Introduction

This chapter considers expected value minimization problems subject to discrete-

time nonlinear dynamic systems with stochastic inputs and hybrid discrete-continuous be-

havior. The optimization of hybrid systems arises in chemical processing, systems biology,

and robotics to name only a few [87]. However, the formulation here is largely motivated by

the problem of integrated planning and scheduling under uncertainty, which arises broadly

in power systems, multiproduct chemical plants, flexible manufacturing, etc. [37, 88]. Such

problems aim to co-optimize long-term investment decisions with mixed-integer operational

decisions that occur on much shorter time-scales. In full generality, these are multistage

stochastic programs with mixed-integer recourse, and are intractable without major sim-

plifications when many stages are considered [40]. Unfortunately, this makes it difficult to

model process operations in sufficient detail when optimizing important investment deci-

sions [88]. However, in many applications it is sensible to formulate an explicit decision

rule that determines (suboptimal) operational decisions in each stage and scenario, e.g. by

checking a set of logical conditions or thresholds. In many cases, such rules describe how

the system will be operated in practice, which is rarely optimal (e.g., energy management

policies in microgrids, dispatching rules in flexible manufacturing, and hedging rules in wa-

ter management [16, 74, 75]). In other cases, such rules approximate optimal operations

(truly optimal rules are sometimes computable via multi-parametric programming) [10, 89].

In principle, decision rules greatly simplify integrated planning and scheduling problems by

eliminating a potentially huge number of recourse decisions and producing a single stage

approximation. Indeed, for multistage linear programs with continuous recourse, decision

rules often lead to simple linear or second-order cone programs [82]. However, problems

with integer recourse require discrete decision rules, for which existing approaches lead to

much more demanding reformulations (e.g., semi-infinite mixed-integer programs in [90]).

In general, substituting a discrete decision rule into the operational dynamics of a system

results in a stochastic hybrid system. Accordingly, there is significant interest in efficient
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algorithms for optimizing such systems.

Given a stochastic hybrid system and an associated cost, the goal of this work is

to determine when the expected value of the cost is differentiable, and hence amenable to

efficient optimization by gradient-based methods. To see the significance of this question,

note that the hybrid behavior can make the cost discontinuous when evaluated at a fixed re-

alization of uncertainty (i.e., scenario). For example, in integrated planning and scheduling,

a perturbation of a planning decision may induce a change in a discrete operational decision

through the action of an embedded decision rule. Moreover, such discontinuities can arise

in every operational stage, and every scenario. Thus, the common approach of optimizing

a sample-averaged cost easily results in a problem with thousands of discontinuities (see

§2.6). Clearly, eliminating these through the introduction of binary variables is intractable.

Thus, these problems are commonly addressed using derivative-free algorithms [77, 91, 92].

However, while these methods are easy to implement and avoid local minima, they are

not guaranteed to find optimal solutions finitely, and do not enjoy the fast convergence of

gradient-based algorithms [79, 80]. Thus, in practice, derivative-free methods often require

prohibitive computational effort and may locate suboptimal solutions, especially for high

dimensional problems.

In contrast, this chapter takes an important step towards gradient-based optimiza-

tion of stochastic hybrid systems based on the following insight: Although hybrid behavior

can introduce discontinuities in the cost for any fixed scenario, the expected value of the

cost over a continuous probability distribution may nonetheless be smooth. In other words,

while existing optimization formulations using sample-averaged costs with fixed samples

are highly discontinuous, minimizing the true expected cost may be a smooth NLP, albeit

with a complex objective. This is demonstrated by example in §2.6. To formalize this,

we introduce a general class of discrete-time stochastic hybrid systems (DTSHS) and prove

two sets of sufficient conditions under which the expected cost is continuously differentiable.

We then demonstrate using an illustrative microgrid optimization problem that these condi-

tions are verifiable and broadly applicable. Finally, we show that exploiting noisy gradient
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estimates in a rudimentary stochastic gradient descent algorithm can lead to significant

efficiency gains relative to two standard derivative-free approaches.

The smoothing of discontinuities under the expectation forms the basis for several

existing optimization algorithms used in communications, manufacturing, and finance [93,

94]. Unfortunately, existing smoothness results do not address the general form of hybrid

system analyzed here. Many results apply to discrete-event systems, which are distinct

from the time-driven simulation paradigm used here [95]. Moreover, our systems violate

central assumptions in existing results. Infinitesimal perturbation analysis (IPA) fails for

discontinuous costs, and the likelihood ratio method only permits decision dependence in

the probability density, not in the cost [93]. Smoothed IPA and the ‘push-out’ method over-

come these problems, but require problem specific methods. Weak derivative approaches

require abstract assumptions that have only been reduced to verifiable conditions for sev-

eral academic examples [96]. The article [97] gives differentiability conditions for Markov

processes with optimal discrete actions taken in each time-step, but does not address more

general discrete events that can occur in hybrid systems. Thus, this chapter develops a new

approach to differentiability analysis for general DTSHSs.

2.2.1 Application to the Optimal Design of Microgrids

Microgrids are autonomous power systems capable of operating in isolation from the

grid by pairing local loads and resources, and are widely regarded as an enabling technology

for the integration of distributed renewable energy [3]. However, the highly variable and

uncertain nature of wind and solar resources poses serious complications, often requiring

microgrids to coordinate multiple generation and storage technologies (photovoltaics, wind

turbines, diesels, batteries, hydrogen storage, etc.) [16, 17]. This gives rise to a complex

operational problem in which the discrete status (e.g., on/off) and power set-point for each

generator, storage unit, and controllable load must be determined to balance supply and de-

mand on the order of minutes to hours, while also hedging against future uncertainties. This

energy management problem combines the tasks commonly referred to as unit commitment
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and economic dispatch in larger power systems, and is distinct from power management,

which concerns power quality control on subsecond time-scales [98]. Energy management

decisions strongly impact the economics and reliability of systems with large shares of wind

and solar power. At the same time, these decisions are constrained by capital investments,

such as storage capacity. Thus, microgrid investment decisions, which typically consider

horizons of 20 years or more, are tightly coupled with operational decisions on time-scales

of hours to minutes [17].

Microgrid design fits within the broader context of power system expansion planning

[69, 99], and is most closely related to formulations with detailed unit commitment con-

straints [37, 65, 100]. Such problems can generally be cast as multistage stochastic programs

[101] in which the load and renewable generation are random variables and unit commitment

is modeled by mixed-integer recourse decisions in each stage (e.g., hour). However, solv-

ing such problems often requires approximations that can significantly degrade operational

detail. For example, long planning horizons are commonly addressed using aggregated,

non-chronological representations of the load and resource data (and hence of system op-

erations), such as load-duration or screening curves [64, 69, 102]. In contrast, models with

hourly resolution often use simplified unit commitment models that relax binary decisions

[65, 66, 103], or consider only a small number of representative days in the planning horizon

[37, 104]. In some cases, decomposition methods are also used [66, 105]. Another common

but potentially drastic simplification is to consider fixed rather than stochastic load and

resource data, which allows operational decisions to be made with perfect foresight [37, 66,

100]. In contrast, many models have considered uncertainty using scenario-based, chance-

constrained, and robust formulations [67, 106–108]. However, very few works have yet

incorporated detailed unit commitment models into stochastic formulations [105]. Finally,

linearized models are predominantly used to maintain computational tractability [103, 104].

The reader is referred to [109] for further details on expansion planning formulations.

In contrast to larger power systems, detailed operational decisions in microgrids are

typically made in practice using a logical controller called the energy management policy
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(EMP) [16]. Moreover, such policies have been widely adopted in microgrid simulation

codes that are naturally described as discrete-time stochastic hybrid systems (DTSHSs)

[73, 110]. Such simulations typically consider hourly time-steps over a year or more, and

are increasingly used to evaluate detailed operational considerations in the context of long-

term investment decisions [110]. However, as described above, discrete actions of the EMP

can make the system cost highly discontinuous for fixed load and resource data. Likely for

this reason, existing approaches for optimizing microgrid simulations have exclusively used

derivative-free methods [17, 77, 91, 92]. In contrast, we show in §2.6 that the differentiability

conditions for DTSHS proven here hold for a simple but representative microgrid model,

and enable significantly faster optimization via gradient-based methods.

2.3 Problem Statement

To avoid cumbersome indexing, we denote scalars and vectors without emphasis and

use bold font for sequences x = (x0, . . . , xN ) associated with the discrete-time system below.

Bη(v) is the open ball of radius η > 0 around v. Ck(D,Rm) is the set of k-times continuously

differentiable maps from D into Rm. Let S ⊂ Rns , R ⊂ Rnr , and ` ∈ Ck(S × R,Rm) with

k ≥ 1. For any (ŝ, r̂) ∈ S ×R, the Jacobian matrix of `(ŝ, ·) at r̂ is ∂`
∂r (ŝ, r̂) or ∇T

r `(ŝ, r̂).

Consider the discrete-time stochastic hybrid system (DTSHS)

σk,i =

 1, if hi(k, σk,1:i−1, xk, wk, θ) ≤ 0,

−1, otherwise
, ∀i ∈ {1, . . . , nσ}, (2.1)

xk+1 = f(k, σk, xk, wk, θ), (2.2)

with state xk ∈ X̃ ⊂ Rnx , input wk ∈ W̃ ⊂ Rnw , parameters θ ∈ Θ̃ ⊂ Rnθ , and discrete

mode σk ∈ {−1, 1}nσ . The sets X̃, W̃ , and Θ̃ are open, as indicated by the tilde, and we

denote S = {−1, 1} and K = {0, . . . , N−1} with N > 0. Then, f : K×Snσ×X̃×W̃×Θ̃→ X̃

and hi : K × Si−1 × X̃ × W̃ × Θ̃ → R. The functions h = (h1, . . . , hnσ) are called event

functions. Note that hi can depend on the discrete outcome of all previous event functions
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in the same step k, σk,1:i−1 = (σk,1, . . . , σk,i−1), and h1 has no dependence on σk. This is

necessary for representing, e.g., microgrid EMPs, which often make dispatching decisions

sequentially in a single time-step. The reader is referred to §2.6.1 for an example of using

(2.1)–(2.2) to model a simple microgrid.

The initial condition x0 and inputs w0, . . . , wN−1 are random variables. The case

where x0 has deterministic elements is not considered here, but the necessary modifica-

tions are discussed in Remark 2.5.2 in §2.5. Define the shorthand ω := (x0, w0, . . . , wN−1)

and Ω̃ := X̃ × W̃ × · · · × W̃ . Furthermore, let X0 := [xL0 , x
U
0 ] ⊂ X̃ and

W := [wL, wU ] ⊂ W̃ be compact nx- and nw-dimensional intervals with nonempty inte-

riors, and let Ω := X0 ×W × · · · ×W .

Assumption 2.3.1. ω has a probability density p : Ω̃ ⊂ Rnx+Nnw → R that is zero outside

Ω and continuous on the interior of Ω.

Define the solution map φk : Ω̃× Θ̃→ Rnx by φk(ω, θ) = xk, where xk is the state

of (2.1)–(2.2) at k given (ω, θ). It will be understood without complicating the notation

that φk depends only on (x0, w0, . . . , wk−1). Let `S : K × Snσ × X̃ × W̃ × Θ̃ → R and

`T : X̃ × Θ̃ → R denote stage and terminal costs associated with (2.1)–(2.2), respectively.

Thus, the total cost of a trajectory of (2.1)–(2.2) given (ω, θ) is

`(θ,ω) :=
N−1∑
k=0

`S(k, σk, φk(ω, θ), wk, θ) + `T (φN (ω, θ), θ). (2.3)

We are interested in the dynamic optimization problem

min
θ∈Θ
L(θ), L(θ) := E[`(θ,ω)] =

∫
Ω
`(θ,ω)p(ω)µ(dω), (2.4)

where Θ ⊂ Θ̃ is compact, E denotes the expected value, and µ is the Lebesgue measure on

Ω̃. Existence of the integral is proven in Lemma 2.4.4.

Assumption 2.3.2. For each k ∈ K and σ ∈ Snσ , the functions f(k, σ, ·, ·, ·), `S(k, σ, ·, ·, ·),

and hi(k, σ1:i−1, ·, ·, ·), ∀i ∈ {1, . . . , nσ}, are continuously differentiable on X̃ × W̃ × Θ̃ and
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`T ∈ C1(X̃ × Θ̃,R).

Despite Assumption 2.3.2, the solution φk and cost ` are discontinuous in general due

to the discrete events in (2.1). However, it may still happen that L ∈ C1(Θ̃,R), enabling

the use of gradient-based algorithms to solve (2.4). Our objective is to derive verifiable

sufficient conditions on f , h, `S and `T such that this holds. See §2.6 for an example where

` is discontinuous and L is smooth.

2.4 General Sufficient Conditions for Differentiability

This section formulates sufficient conditions for continuous differentiability of L as

defined in (2.4). These are motivated by existing results on the regularity of integrals over

parametric regions [111–113], which we relate to (2.4) through discontinuity-locked models,

or in short, σ-locked models.

For each mode sequence σ ∈ SNnσ , the σ-locked model is defined by applying

(2.2) with σ fixed; i.e., (2.1) is not used. Let φdlk : SNnh × Ω̃ × Θ̃ → Rnx be defined by

φdlk (σ,ω, θ) = xk, where xk is the solution of the σ-locked model given (ω, θ). Furthermore,

define

`dl(σ,ω, θ) :=

N−1∑
k=0

`S(k, σk, φ
dl
k (σ,ω, θ), wk, θ) + `N (φdlN (σ,ω, θ), θ). (2.5)

In the arguments below, we first show that Ω can be partitioned into sets Ω(σ, θ)

(Definition 2.4.1) on which φk and ` agree with the σ-locked models just defined (Lemma

2.4.1). Furthermore, the σ-locked models are C1 (Lemma 2.4.2). We then impose two

assumptions on the regularity of the boundaries of the sets Ω(σ, θ). These permit L to be

written as a sum of integrals over the sets Ω(σ, θ) (Lemma 2.4.4), each with C1 integrands.

Moreover, they imply that each of these integrals, and hence L, is in C1(Θ̃,R) (Theorem

2.4.1).
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Definition 2.4.1. For every k ∈ K, i ∈ {1, . . . , nσ}, and σ ∈ SNnσ , define

ψ̃ki(σ,ω, θ) := σk,ihi(k, σk,1:i−1, φ
dl
k (σ,ω, θ), wk, θ), ∀(ω, θ) ∈ Ω̃× Θ̃. (2.6)

We regard ψ̃ as a map into RNnσ , but use the index ki for clarity. Denote the interval Ω

by [ωL,ωU ] and define ψL(σ,ω, θ) := ωL − ω, ψU (σ,ω, θ) := ω − ωU , ψ := (ψ̃, ψL, ψU ),

and nψ := Nnσ + 2(nx +Nnw). Finally, define the sets

Ω(σ, θ) := {ω ∈ Ω̃ : ψ(σ,ω, θ) ≤ 0}, (2.7)

Ω̂(σ, θ) := {ω ∈ Ω̃ : ψ(σ,ω, θ) < 0}. (2.8)

Lemma 2.4.1. For every k ∈ K, σ ∈ SNnσ , and θ ∈ Θ̃,

1. φk(ω, θ) = φdlk (σ,ω, θ), ∀ω ∈ Ω̂(σ, θ).

2. `(ω, θ) = `dl(σ,ω, θ), ∀ω ∈ Ω̂(σ, θ).

Proof Choose σ ∈ SNnσ , θ ∈ Θ̃, and ω ∈ Ω̂(σ, θ). Assume Conclusion 1 holds with

some k ∈ K, which is true with k = 0 since φk(ω, θ) = φdlk (σ,ω, θ) = x0. Let σ̂k be the vector

obtained by applying (2.1) with wk and xk = φk(ω, θ). We show that σ̂k = σk. Choose

i ≥ 1 and assume σ̂k,1:i−1 = σk,1:i−1, which holds for i = 1. By definition, ω ∈ Ω̂(σ, θ)

implies σk,ihi(k, σk,1:i−1, φ
dl
k (σ,ω, θ), wk, θ) < 0. But since φk(ω, θ) = φdlk (σ,ω, θ) and

σk,1:i−1 = σ̂k,1:i−1, this gives σk,ihi(k, σ̂k,1:i−1, φk(ω, θ), wk, θ) < 0. By (2.1), it follows that

σ̂k,i = σk,i. Induction on i shows σ̂k = σk, and (2.2) then gives φk+1(ω, θ) = φdlk+1(σ,ω, θ).

By induction on k, Conclusion 1 holds ∀k ∈ K, and Conclusion 2 follows immediately.

Lemma 2.4.2. For every k ∈ K and σ ∈ SNnσ , φdlk (σ, ·, ·) ∈ C1(Ω̃ × Θ̃,Rnx),

`dl(σ, ·, ·) ∈ C1(Ω̃× Θ̃,R), and ψ(σ, ·, ·) ∈ C1(Ω̃× Θ̃,Rnψ).

Proof Since σ is fixed in the definition of φdlk (σ, ·, ·), continuous differentiability

follows by a standard inductive argument using Assumption 2.3.2. The remaining claims

follow immediately by composition.
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We now make two assumptions on the sets Ω(σ, θ) that imply L ∈ C1(Θ̃,R). These

are reduced to verifiable conditions on (2.1)–(2.2) in §2.5.

Definition 2.4.2. For every σ ∈ SNnw and θ ∈ Θ̃, define

∂iΩ(σ, θ) := {ω ∈ Ω(σ, θ) : ψi(σ,ω, θ) = 0}, ∀i ∈ {1, . . . , nψ}. (2.9)

Assumption 2.4.1. For every σ ∈ SNnw , θ ∈ Θ̃, and i ∈ {1, . . . , nψ}, we have

‖∂ψi∂ω (σ,ω, θ)‖ > 0, ∀ω ∈ ∂iΩ(σ, θ).

Assumption 2.4.2. For every σ ∈ SNnw , θ ∈ Θ̃, and i, j ∈ {1, . . . , nψ} with i 6= j,

∂ψi
∂ω (σ,ω, θ) and

∂ψj
∂ω (σ,ω, θ) are linearly independent for all ω ∈ (∂iΩ(σ, θ) ∩ ∂jΩ(σ, θ)).

Conceptually, Assumptions 2.4.1–2.4.2 imply that θ must change the measure of each

Ω(σ, θ), and hence the probability that ω ∈ Ω(σ, θ), smoothly. To see this, consider the

simple examples Ω(σ, θ) = {ω : 0 ≤ ω ≤ 1, 0 ≤ θ} and Ω(σ, θ) = {ω : 0 ≤ ω ≤ 1, ω ≤ θ}.

For the first, ψ = (ω, ω − 1,−θ), and for the second, ψ = (ω, ω − 1, ω − θ). The first set

violates Assumption 2.4.1 at θ = 0 because ψ3 = 0 and ∂ψ3

∂ω = 0, and indeed its measure

jumps from 0 to 1 there. The second violates Assumption 2.4.2 for θ ∈ {0, 1}, and its

measure is nonsmooth at both points. For example, with θ = 0 we have ψ1 = ψ3 = ω,

which are linearly dependent for all ω. Next, we use Assumption 2.4.1 to express L as a

sum of integrals over the sets Ω(σ, θ).

Lemma 2.4.3. Under Assumption 2.4.1, µ(∂iΩ(σ, θ)) = 0 for all σ ∈ SNnw , θ ∈ Θ̃, and

i ∈ {1, . . . , nψ}.

Proof By Assumption 2.4.1, ∃δ > 0 such that ‖∂ψi∂ω (σ, ·, θ)‖ > 0 on the superset

of ∂iΩ(σ, θ) defined by {ω ∈ Ω(σ, θ) + Bδ(0) : ψi(σ,ω, θ) = 0}. By Theorem 2.1.2 and

§3.3.17.2 of [114], this set is a C1 submanifold of Rnω of dimension (nω − 1), and hence has

Lebesgue measure zero in Rnω .

27



Lemma 2.4.4. Under Assumption 2.4.1, L(θ) exists and satisfies

L(θ) =
∑
σ

∫
Ω(σ,θ)

`dl(σ,ω, θ)p(ω)µ(dω), ∀θ ∈ Θ̃. (2.10)

Proof Choose θ ∈ Θ̃ and let L(θ) be the right-hand side of (2.10). By Lemma

2.4.2, L(θ) exists because each Ω(σ, θ) is closed and hence measurable. By Lemma 2.4.3,

µ(Ω(σ, θ)) = µ(Ω̂(σ, θ)). Thus, L(θ) =
∑
σ

∫
Ω̂(σ,θ) `(ω, θ)p(ω)µ(dω), where Lemma 2.4.1

has been used to replace `dl with `. But ∪σΩ(σ, θ) = Ω, so the disjoint sets Ω̂(σ, θ) cover

all of Ω except for a set of measure zero. Thus, L(θ) =
∫

Ω `(ω, θ)p(ω)µ(dω) = L(θ).

Theorem 2.4.1. Under Assumption 2.4.1, L is continuous on Θ̃. If Assumption 2.4.2 also

holds, then L ∈ C1(Θ̃,R).

Due to excessive length, the proof of Theorem 2.4.1 is provided in the appendix of

this chapter. In brief, the proof first verifies continuity and continuous differentiability of the

integrals over θ-dependent domains in (2.10). Continuity of such integrals under Assumption

2.4.1 is typically attributed to Raik [111], which is only available in Russian, so the result is

proven here. Differentiability under Assumptions 2.4.1–2.4.2 is due to Kibzun and Uryasev

[112, 113]. The extension to continuous differentiability, which is essential for gradient-based

optimization, is new. Since many intermediate results are required using mostly standard

constructions (e.g., the surface integral over a C1 manifold), this development has been

relegated to the appendix for brevity.

2.5 Verifiable Differentiability Conditions for DTSHS

The differentiability conditions established in §2.4 require assumptions on the vector

function ψ defined in Definition 2.4.1. These conditions are difficult to verify in practice,

first because ψ is very high-dimensional when the horizon N is large, and second because

the elements of ψ are defined recursively through the DTSHS (2.1)–(2.2), and thus are

not known in a convenient form for analysis. The objective of this section is to reduce
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Assumptions 2.4.1–2.4.2 to two sets of easily verifiable conditions on the event functions h

and right-hand side functions f in (2.1)–(2.2). The distinct advantage is that the developed

conditions are verifiable at each k independently. The implications linking these verifiable

conditions to the general assumptions of §2.4 are summarized in Figure 2.1.

Condition 3.4.1

Condition 2.5.3 & 2.5.5

Condition 3.4.1− 2.5.2

Condition 2.5.3− 2.5.6

Assumption 2.4.1

Assumptions 2.4.1-2.4.2

L Continuous

L ∈ C1(Θ̃,R)

Lemma 2.5.1

Lemma 2.5.3

Lemma 2.5.2

Lemma 2.5.4

Theorem 2.4.1

Theorem 2.4.1

Figure 2.1: Summary of implications (arrows) linking the 1st (grey) and 2nd (cyan) sets of
verifiable conditions in §2.5 to the general assumptions in §2.4.

2.5.1 A First Set of Sufficient Conditions: No Pure-State Events

This section provides sufficient conditions that impose strong requirements on h,

but require nothing of f beyond Assumption 2.3.2. These conditions are easier to verify

than those in §2.5.2, and should serve as a first check. The key requirement is that h

has nontrivial dependence on w. Thus, we exclude events that depend only on the state

xk, which we call pure-state events. We require the sets M(k, σ, θ) defined below, which

partition the joint state and uncertainty set X̃×W at each k just as the sets Ω(σ, θ) partition

the cumulative uncertainty set Ω̃ in §2.4. To ease notation, we will write hi(k, σ, z, w, θ)

with the understanding that hi depends only on σ1:i−1.

Definition 2.5.1. For every k ∈ K, σ ∈ Snσ , and θ ∈ Θ̃, define the sets

M(0, σ, θ) := {(z, w) ∈ X0 ×W : σihi(k, σ, z, w, θ) ≤ 0, ∀i}, (2.11)

M(k, σ, θ) := {(z, w) ∈ X̃ ×W : σihi(k, σ, z, w, θ) ≤ 0, ∀i}, ∀k > 0, (2.12)

∂iM(k, σ, θ) := {(z, w) ∈M(k, σ, θ) : hi(k, σ, z, w, θ) = 0}, ∀k ≥ 0. (2.13)
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Remark 2.5.1. It follows immediately from Definition 3.4.3 that

Ω(σ, θ) = {ω ∈ Ω̃ : (φdlk (σ,ω, θ), wk) ∈M(k, σk, θ), ∀k ∈ K}. (2.14)

Condition 2.5.1. For any k ∈ K, σ ∈ Snσ , θ ∈ Θ̃, and i ∈ {1, . . . , nσ},

∂hi
∂w

(k, σ, z, w, θ) 6= 0, ∀(z, w) ∈ ∂iM(k, σ, θ). (2.15)

Condition 2.5.2. Choose any k ∈ K, σ ∈ Snσ , θ ∈ Θ̃, i, j ∈ {1, . . . , nσ} with i 6= j, and

p ∈ {1, . . . , nw}. With all derivatives evaluated at (k, σ, z, w, θ),

1. rank

[
∂hi
∂w
∂hj
∂w

]
= 2, ∀(z, w) ∈ ∂iM(k, σ, θ) ∩ ∂jM(k, σ, θ).

2. rank

[
∂hi
∂w

eTp

]
= 2, ∀(z, w) ∈ ∂iM(k, σ, θ) with wp = wLp or wp = wUp .

Condition 3.4.1 states that an event function hi must have ∂hi
∂w = 0 whenever it is

active (i.e., hi = 0). By Condition 2.5.2, any two event functions that are active at the same

time must have linearly independent w-derivatives. We show below that these conditions

imply Assumptions 2.4.1–2.4.2, and hence L ∈ C1(Θ̃,R), as shown in Fig. 2.1. Recall that

each hi is related to the function ψ in Assumptions 2.4.1–2.4.2 through (2.6). Thus, we

simply apply Conditions 3.4.1–2.5.2 to verify Assumptions 2.4.1–2.4.2 for every ψr and ψs

with r 6= s.

Lemma 2.5.1. Condition 3.4.1 implies Assumption 2.4.1.

Proof Choose σ ∈ SNnσ , θ ∈ Θ̃, r ∈ {1, · · · , nψ}, and ω ∈ ∂rΩ(σ, θ). To verify

Assumption 2.4.1, we show ∂ψr
∂ω (σ,ω, θ) 6= 0. Since ψ = (ψ̃, ψL, ψU ), there are two cases:

r ∈ {1, . . . , Nnσ} and r ∈ {Nnσ + 1, . . . , nψ}. In the latter, either ψr = ψLp or ψr = ψUp

with p ∈ {1, . . . , nx +Nnw}. Thus, ∂ψr
∂ω 6= 0 since

∂ψL

∂ω (σ,ω, θ) = −I, ∂ψU

∂ω (σ,ω, θ) = I. (2.16)
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In the former, ψ̃r(σ,ω, θ) = σk,ihi(k, σk, φ
dl
k (σ,ω, θ), wk, θ) for some k ∈ K and

i ∈ {1, . . . , nσ}. Then ∂ψr
∂ω = [∂ψr∂x0

∂ψr
∂w0:k−1

∂hi
∂w 0T

nw · · · 0T
nw ], with ∂hi

∂w evaluated at

(k, σ, φdlk (σ,ω, θ), wk, θ) and the derivatives of ψr at (σ,ω, θ). But ω ∈ ∂rΩ(σ, θ) implies

(φdlk (σ,ω, θ), wk) ∈ ∂iM(k, σk, θ), so ∂ψr
∂ω is nonzero by Condition 3.4.1. Thus, Assumption

2.4.1 holds.

Lemma 2.5.2. Conditions 3.4.1 and 2.5.2 imply Assumption 2.4.2.

Proof Choose any σ ∈ SNnσ , θ ∈ Θ̃, r, s ∈ {1, · · · , nψ} with s 6= r and let

ω ∈ (∂rΩ(σ, θ) ∩ ∂sΩ(σ, θ)). To verify Assumption 2.4.2, we show that ∂ψr
∂ω (σ,ω, θ) and

∂ψs
∂ω (σ,ω, θ) are linearly independent in three cases.

Case 1: r, s ∈ {Nnσ + 1, . . . , nψ}. In this case, ∃p, q ∈ {1, . . . , nx +Nnw} such that

ψr = ψLp or ψr = ψUp , and ψs = ψLq or ψs = ψUq . Since ψr = ψs = 0 and ωL < ωU , we

must have p 6= q. Thus, the gradients of ψr and ψs at (σ,ω, θ) are linearly independent by

(2.16).

Case 2: r, s ∈ {1, . . . , Nnσ}. In this case, ∃k,m ∈ K and i, j ∈ {1, . . . , nσ} such

that ψr = ψ̃ki and ψs = ψ̃mj . If k = m, then i 6= j and

∂ψr∂ω

∂ψs
∂ω

 =

∂ψr∂x0

∂ψr
∂w0:k−1

∂hi
∂w 0T

nw · · · 0T
nw

∂ψs
∂x0

∂ψs
∂w0:k−1

∂hj
∂w 0T

nw · · · 0T
nw

 , (2.17)

where the derivatives of ψr and ψs are evaluated at (σ,ω, θ) and those of hi

and hj at (k, σ, φdlk (σ,ω, θ), wk, θ). But ω ∈ (∂rΩ(σ, θ) ∩ ∂sΩ(σ, θ)) implies that

(φdlk (σ,ω, θ), wk) ∈ ∂iM(k, σk, θ) ∩ ∂jM(k, σk, θ). Thus, Condition 2.5.2.1 implies that

∂hi
∂w and

∂hj
∂w are linearly independent, and hence so are ∂ψr

∂ω and ∂ψs
∂ω . Alternatively, if k 6= m

(assume k > m w.l.o.g.), then

∂ψr∂ω

∂ψs
∂ω

 =

∂ψr∂x0

∂ψr
∂w0:m−1

∂ψr
∂wm

· · · ∂ψr
∂wk−1

∂hi
∂w 0T

nw · · · 0T
nw

∂ψs
∂x0

∂ψs
∂w0:m−1

∂hj
∂w · · · 0T

nw 0T
nw 0T

nw · · · 0T
nw

 , (2.18)

where
∂hj
∂w is now evaluated at (m,σm, φ

dl
m(σ,ω, θ), wm, θ). But ω ∈ ∂rΩ(σ, θ)
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implies (φdlk (σ,ω, θ), wk) ∈ ∂iM(k, σk, θ) and ω ∈ ∂sΩ(σ, θ) implies that

(φdlm(σ,ω, θ), wm) ∈ ∂jM(m,σm, θ). Thus, by Condition 3.4.1, both ∂hi
∂w and

∂hj
∂w are

nonzero, and hence ∂ψr
∂ω and ∂ψs

∂ω are linearly independent by (2.18).

Case 3: r ∈ {1, . . . , Nnσ}, s ∈ {Nnσ + 1, . . . , nψ}. In this case, there exist

k ∈ K and i ∈ {1, . . . , nσ} such that ψr = ψ̃ki and either ψs = ψUp or ψs = ψLp for

some p ∈ {1, . . . , nx +Nnw}. Thus,

∂ψr∂ω

∂ψs
∂ω

 =

∂ψr∂x0

∂ψr
∂w0:k−1

∂hi
∂w 0T

nw · · · 0T
nw

eT
p

 , (2.19)

where the derivative of hi is evaluated at (k, σk, φ
dl
k (σ,ω, θ), wk, θ). But

ω ∈ (∂rΩ(σ, θ) ∩ ∂sΩ(σ, θ)) implies that (φdlk (σ,ω, θ), wk) ∈ ∂iM(k, σk, θ) and either

ωp = ωLp or ωp = ωUp . Thus, by Condition 2.5.2.2, ∂ψr
∂ω and ∂ψs

∂ω must be linearly

independent if the 1 in eT
p appears in the third block column of (2.19). Yet, if the 1

appears elsewhere, then linear independence follows from ∂hi
∂w 6= 0 by Condition 3.4.1.

Thus, Assumption 2.4.2 is verified.

Theorem 2.5.1. Under Condition 3.4.1, L is continuous on Θ̃. If Condition 2.5.2 also

holds, then L ∈ C1(Θ̃,R).

Proof The result follows from Theorem 2.4.1 with Lemmas 2.5.1 and 2.5.2.

2.5.2 A Second Set of Sufficient Conditions: Allowing Pure-State Events

The conditions in §2.5.1 fail whenever ∂hi
∂w = 0, while in applications it is common

to have events that depend only on the state xk (i.e., pure-state events). Here, we develop

a second set of conditions that permits ∂hi
∂w = 0. The central idea is that, if hi has trivial

dependence on wk, then it must have nontrivial dependence on wk−1 via xk. These condi-

tions involve both h and f , which makes them less restrictive but also harder to verify than

those in §2.5.1. They require the following extension of the sets M(k, σ, θ) in §2.5.1:

32



Definition 2.5.2. For every k > 0, σ−, σ ∈ Snσ , and θ ∈ Θ̃, define

M2
f (k, σ−, σ, θ) := {(z−, w−, z, w) ∈M(k − 1, σ−, θ)×M(k, σ,θ) : (2.20)

z = f(k − 1, σ−, z−, w−, θ)}.

Furthermore, let ∂iM2
f (k, σ−, σ, θ) and ∂−i M2

f (k, σ−, σ, θ) be the restrictions of

M2
f (k, σ−, σ, θ) to points such that (z, w) ∈ ∂iM(k, σ,θ) and (z−, w−) ∈ ∂iM(k − 1, σ−, θ),

respectively.

In words, M2
f (k, σ−, σ, θ) is the set of states and uncertainties in two consecutive

time steps that satisfy the system dynamics and are consistent with the mode sequence

(σ−, σ). The sets ∂−i M2
f (k, σ−, σ, θ) and ∂iM2

f (k, σ−, σ, θ) additionally require that hi = 0

in the first or second time step, respectively. For readability in the conditions below,

derivatives evaluated at (k, σ, z, w, θ) are written without arguments, while those evaluated

at (k − 1, σ−, z−, w−, θ) are written with the argument (∗).

Condition 2.5.3. For any k > 0, σ−, σ ∈ Snσ , θ ∈ Θ̃, and i ∈ {1, . . . , nσ},

[
∂hi
∂x

∂f
∂w (∗) ∂hi

∂w

]
6= 0, ∀(z−, z, w−, w) ∈ ∂iM2

f (k, σ−, σ, θ). (2.21)

Condition 2.5.4. Choose any k > 0, σ−, σ ∈ Snσ , θ ∈ Θ̃, i, j ∈ {1, . . . , nσ} with i 6= j,

and p ∈ {1, . . . , 2nw}. Abbreviating M2
f :=M2

f (k, σ−, σ, θ),

1. rank

[
∂hi
∂x

∂f
∂w

(∗) ∂hi
∂w

∂hj
∂x

∂f
∂w

(∗)
∂hj
∂w

]
= 2, ∀(z−, z, w−, w) ∈ ∂iM2

f ∩ ∂jM2
f .

2. rank

[
∂hi
∂x

∂f
∂w

(∗)
∂hj
∂w

(∗)

]
= 2, ∀(z−, z, w−, w) ∈ ∂iM2

f ∩ ∂
−
j M2

f with ∂hi
∂w = 0 and

∂hj
∂w (∗) 6= 0.

3. rank

[
∂hi
∂x

∂f
∂w

(∗) ∂hi
∂w

eTp

]
= 2, ∀(z−, z, w−, w) ∈ ∂iM2

f with [w−w ]p =
[
wL

wL

]
p

or

[w−w ]p =
[
wU

wU

]
p
.

Condition 2.5.3 ensures that, at any k, each event function hi has nontrivial depen-

dence on either wk or wk−1 (via xk) if it is active (i.e., hi = 0). Condition 2.5.4 ensures that
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any two active event functions, chosen in any combination from either time k or k − 1, are

linearly independent as functions of (wk−1, wk). The next two conditions are special cases

of Conditions 2.5.3–2.5.4 for k = 0.

Condition 2.5.5. For k = 0 and any σ ∈ Snσ , θ ∈ Θ̃, and i ∈ {1, . . . , nσ},

[
∂hi
∂x

∂hi
∂w

]
(k, σ, z, w, θ) 6= 0, ∀(z, w) ∈ ∂iM(k, σ, θ). (2.22)

Condition 2.5.6. Let k = 0 and choose any σ ∈ Snσ , θ ∈ Θ̃, i, j ∈ {1, . . . , nσ} with i 6= j,

and p ∈ {1, . . . , nx + nw}. With the abbreviation M := M(0, σ, θ) and all the derivatives

evaluated at (0, σ, z, w, θ):

1. rank

[
∂hi
∂x

∂hi
∂w

∂hj
∂x

∂hj
∂w

]
= 2, ∀(z, w) ∈ ∂iM∩ ∂jM.

2. rank

[
∂hi
∂x

∂hi
∂w

eTp

]
= 2, ∀(z, w) ∈ ∂iM with [ zw ]p =

[
xL0
wL

]
p

or [ zw ]p =
[
xU0
wU

]
p
.

We show below that Conditions 2.5.3–2.5.6 imply Assumptions 2.4.1–2.4.2, and

hence L ∈ C1(Θ̃,R), as shown in Fig. 2.1. Again, we simply apply Conditions 2.5.3–2.5.6

to verify Assumptions 2.4.1–2.4.2 using the relation (2.6).

Lemma 2.5.3. Conditions 2.5.3 and 2.5.5 imply Assumption 2.4.1.

Proof Choose σ ∈ SNnσ , θ ∈ Θ̃, r ∈ {1, · · · , nψ}, and ω ∈ ∂rΩ(σ, θ).

If r ∈ {Nnσ + 1, . . . , nψ}, then ∂ψr
∂ω (σ,ω, θ) 6= 0 by (2.16). Otherwise,

ψr(σ,ω, θ) = σk,ihi(k, σk, φ
dl
k (σ,ω, θ), wk, θ) for some k and i. If k = 0, then

∂ψr
∂ω =

[
∂hi
∂x

∂hi
∂w 0T

(N−1)nw

]
with ∂hi

∂w and ∂hi
∂x evaluated at (0, σ0, x0, w0, θ). But

(x0, w0) ∈ ∂iM(0, σ0, θ) because ω ∈ ∂rΩ(σ, θ). Thus, Condition 2.5.5 implies

∂ψr
∂ω (σ,ω, θ) 6= 0. If k > 0, then

∂ψr
∂ω

=

[
∂ψr
∂x0

∂ψr
∂w0:k−2

∂hi
∂x

∂f
∂w

∂hi
∂w 0T

nw · · · 0T
nw

]
, (2.23)

where the derivatives of ψr are evaluated at (σ,ω, θ) and the derivatives of hi and

f at (k, σk, φ
dl
k (σ,ω, θ), wk, θ) and (k − 1, σk−1, φ

dl
k−1(σ,ω, θ), wk−1, θ), respectively. But
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(φdlk−1(σ,ω, θ), wk−1, φ
dl
k (σ,ω, θ), wk) ∈ ∂iM2

f (k, σk−1, σk, θ) because ω ∈ ∂rΩ(σ, θ). Thus,

Condition 2.5.3 implies ∂ψr
∂ω 6= 0.

Lemma 2.5.4. Conditions 2.5.3–2.5.6 imply Assumption 2.4.2.

Proof Choose σ ∈ SNnσ , θ ∈ Θ̃, r, s ∈ {1, · · · , nψ} with s 6= r and let

ω ∈ (∂rΩ(σ, θ) ∩ ∂sΩ(σ, θ)). We show that ∂ψr
∂ω (σ,ω, θ) and ∂ψs

∂ω (σ,ω, θ) are linearly inde-

pendent. Three cases are considered.

Case 1: r, s ∈ {1, . . . , Nnσ}. For this case, ∃k,m ∈ K and i, j ∈ {1, . . . , nσ} such

that ψr = ψ̃ki and ψs = ψ̃mj . If k,m = 0, then i 6= j because r 6= s, and

∂ψr∂ω

∂ψs
∂ω

 =

 ∂hi∂x
∂hi
∂w 0T

nw · · · 0T
nw

∂hj
∂x

∂hj
∂w 0T

nw · · · 0T
nw

 , (2.24)

where the derivatives of hi and hj are evaluated at (0, σ0, x0, w0, θ). But

(x0, w0) ∈ (∂iM(0, σ0, θ) ∩ ∂jM(0, σ0, θ) because ω ∈ (∂rΩ(σ, θ) ∩ ∂sΩ(σ, θ)). Thus,[
∂hi
∂x

∂hi
∂w

]
and

[
∂hj
∂x

∂hj
∂w

]
are linearly independent by Condition 2.5.6.1, and hence so are

∂ψr
∂ω and ∂ψs

∂ω .

If k = m > 0, then again i 6= j, and

∂ψr∂ω

∂ψs
∂ω

 =

∂ψr∂x0

∂ψr
∂w0:k−2

∂hi
∂x

∂f
∂w

∂hi
∂w 0T

nw · · · 0T
nw

∂ψs
∂x0

∂ψs
∂w0:k−2

∂hj
∂x

∂f
∂w

∂hj
∂w 0T

nw · · · 0T
nw

 , (2.25)

with derivatives of hi and hj evaluated at (k, σk, φ
dl
k (σ,ω, θ), wk, θ) and those

of f at (k − 1, σk−1, φ
dl
k−1(σ,ω, θ), wk−1, θ). But ω ∈ ∂rΩ(σ, θ) ∩ ∂sΩ(σ, θ),

so (φdlk−1(σ,ω, θ), wk−1, φ
dl
k (σ,ω, θ), wk) is in both ∂iM2

f (k, σk−1, σk, θ) and

∂jM2
f (k, σk−1, σk, θ). Thus, by Condition 2.5.4.1,

[
∂hi
∂x

∂f
∂w

∂hi
∂w

]
and

[
∂hj
∂x

∂f
∂w

∂hj
∂w

]
are

linearly independent, and by (2.25), so are ∂ψr
∂ω and ∂ψs

∂ω .
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If k 6= m, assume w.l.o.g. that k > m. If m = k − 1, then

∂ψr∂ω

∂ψs
∂ω

 =

∂ψr∂x0

∂ψr
∂w0:k−2

∂hi
∂x

∂f
∂w

∂hi
∂w 0T

nw · · · 0T
nw

∂ψs
∂x0

∂ψs
∂w0:k−2

∂hj
∂w 0T

nw 0T
nw · · · 0T

nw

 , (2.26)

where the derivatives of hi and f are evaluated as in (2.25) and the derivative of hj is

evaluated at (k − 1, σk−1, φ
dl
k−1(σ,ω, θ), wk−1, θ). In this case, ω ∈ ∂rΩ(σ, θ) ∩ ∂sΩ(σ, θ)

implies that (φdlk−1(σ,ω, θ), wk−1, φ
dl
k (σ,ω, θ), wk) is in both ∂iM2

f (k, σk−1, σk, θ) and

∂−j M2
f (k, σk−1, σk, θ). Thus, if ∂hi∂w = 0 and

∂hj
∂w 6= 0, then Condition 2.5.4.2 implies

[
∂hi
∂x

∂f
∂w

]
and

[
∂hj
∂w

]
are linearly independent. Hence, ∂ψr

∂ω and ∂ψs
∂ω are linearly independent. Alter-

natively, if ∂hi
∂w 6= 0 or

∂hj
∂w = 0, the only way ∂ψr

∂ω and ∂ψs
∂ω are linearly dependent is if the

second row of (2.26) is zero. But this is prohibited by Assumption 2.4.1, which is implied

by Conditions 2.5.3 and 2.5.5, because ω ∈ ∂sΩ(σ, θ).

Finally, if m < k − 1, then

∂ψr∂ω

∂ψs
∂ω

 =

∂ψr∂x0

∂ψr
∂w0:m−1

∂ψr
∂wm

· · · ∂hi
∂x

∂f
∂w

∂hi
∂w 0T

nw · · · 0T
nw

∂ψs
∂x0

∂ψs
∂w0:m−1

∂hj
∂w · · · 0T

nw 0T
nw 0T

nw · · · 0T
nw

 , (2.27)

where the derivatives of hi and f are evaluated as in (2.25) and the derivative of hj is

evaluated at (m,σm, φ
dl
m(σ,ω, θ), wm, θ). In this case, ω ∈ ∂sΩ(σ, θ) implies that the bottom

row of (2.27) is nonzero by Assumption 2.4.1, which is implied by Conditions 2.5.3 and

2.5.5. Thus, ∂ψr
∂ω and ∂ψs

∂ω are linearly independent if
[
∂hi
∂x

∂f
∂w

∂hi
∂w

]
6= 0. But this holds by

Condition 2.5.3 because ω ∈ ∂rΩ(σ, θ) implies that (φdlk−1(σ,ω, θ), wk−1, φ
dl
k (σ,ω, θ), wk) is

in ∂iM2
f (k, σk−1, σk, θ).

Case 2: r ∈ {1, . . . , Nnσ} and s ∈ {Nnσ+1, . . . , nψ}. In this case, ψr = ψ̃ki for some

k ∈ K and i, j ∈ {1, . . . , nσ} and either ψs = ψUp or ψs = ψLp for some p ∈ {1, . . . , nx+Nnw}.

If k = 0, then ∂ψr∂ω

∂ψs
∂ω

 =

∂hi∂x
∂hi
∂w 0T

nw . . . 0T
nw

eT
p

 , (2.28)
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where ∂hi
∂w and ∂hi

∂x are evaluated as in (2.24). But ω ∈ (∂rΩ(σ, θ) ∩ ∂sΩ(σ, θ)) implies

(x0, w0) ∈ ∂iM(0, σk, θ) and ωp ∈ {ωLp , ωUp }. If the 1 in eT
p does not appear in the first

two block columns of the right-hand side of (2.28), then ∂ψr
∂ω and ∂ψs

∂ω are independent by

Condition 2.5.5. Otherwise, either [ x0
w0 ]p =

[
xL0
wL

]
p

or [ x0
w0 ]p =

[
xU0
wU

]
p
, and independence

follows from Condition 2.5.6.2.

If k > 0, then (with derivatives evaluated as in (2.25))

∂ψr∂ω

∂ψs
∂ω

 =

∂ψr∂x0

∂ψr
∂w0:k−2

∂hi
∂x

∂f
∂w

∂hi
∂w 0T

nw · · · 0T
nw

eT
p

 , (2.29)

But ω ∈ ∂sΩ(σ, θ) implies that ωp ∈ {ωLp , ωUp }, and ω ∈ ∂rΩ(σ, θ) implies that

(φdlk−1(σ,ω, θ), wk−1, φ
dl
k (σ,ω, θ), wk) ∈ ∂iM2

f (k, σk−1, σk, θ). Thus, if the 1 in eT
p appears

in the third or fourth block column of (2.29), then Condition 2.5.4.3 implies that ∂ψr
∂ω and

∂ψs
∂ω are linearly independent. Otherwise, linear independence follows by Condition 2.5.3.

Case 3: r, s ∈ {Nnσ + 1, . . . , nψ}. In this case, ∃p, q such that ψr = ψLp or ψr = ψUp

and ψs = ψLq or ψs = ψUq . Since ψr = ψs = 0 and ωL < ωU , we must have p 6= q, and hence

∂ψr
∂ω and ∂ψs

∂ω are linearly independent by (2.16).

Theorem 2.5.2. Under Conditions 2.5.3 and 2.5.5, L is continuous on Θ̃. If Conditions

2.5.4 and 2.5.6 also hold, then L ∈ C1(Θ̃,R).

Proof The result follows from Theorem 2.4.1 with Lemmas 2.5.3 and 2.5.4.

Remark 2.5.2. The proofs of Lemmas 2.5.3–2.5.4 require that x0 is a random variable;

i.e., every element of x0 appears in ω. If x0 = (xr0, x
d
0) with xr0 random and xd0 deterministic,

then we must redefine ω := (xr0, w0, . . . , wN−1) so that ω has a continuous density as per

Assumption 2.3.1. The results in this section hold provided that Conditions 2.5.5–2.5.6 hold

when ∂hi
∂x is replaced by ∂hi

∂xr .
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2.6 Application to an Illustrative Microgrid Optimization

Problem

In this section, the sufficient conditions of §2.5 are used to establish continuous

differentiability of a small microgrid system consisting of a 40 kW diesel generator, a pho-

tovoltaic (PV) array with capacity CPV kW, and a battery bank with capacity CB kWh

serving 10 homes over 25 years. We first consider a simple design problem with no annual

load increase and no capacity expansions after year 1. This model is used to verify differen-

tiability, which is then easily extended to more general cases. Next, we consider expansion

planning with an annual load growth of 8% and investments every 5 years.

2.6.1 System Modeling and EMP Description

The system described above can be modeled as a DTSHS (2.1)–(2.2) with an hourly

time-step [73]. In the case with no annual load increase, a horizon of 1 year (N = 8760)

is sufficient. The design decisions are θ = (CB, CPV , s̃), where s̃ is a threshold used in the

energy management policy (EMP) below. The state of the DTSHS is the state-of-charge

(SOC) of the battery, sk, and the random input is wk = (rk, κk), where rk is a random

perturbation on the load and κk is the clearness index (a measure of cloudiness defined

as the fraction of extraterrestrial irradiation that falls on a horizontal surface at ground

level [115]). The quantities (rk, κk) are used to compute the load in hour k, PL(k, rk) kW,

and the power generated by the PV in hour k, PPV (k, κk, CPV ) kW, as described below.

PPV and PL are used to define the net power PN (k,wk, θ) := PPV (k, κk, CPV )− PL(k, rk).

Based on sk and PN , dispatching decisions are made to determine the status of the diesel

generator and the amount of energy stored in or removed from the battery in hour k. These

decisions (i.e., the EMP) are described below and will define the functions hi, the discrete

mode σk, and the update of sk as in (2.1)–(2.2). The diesel is either operated at PD = 40

kW or not at all in hour k. This captures the important fact that generators, like other

dispatchable components (e.g. fuel cells, electrolyzers, wind turbines, etc.) cannot operate
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below a minimum power. Thus, the EMP must make a discrete decision in each hour.

One year of hourly irradiation [116] and residential electric load data ([117], high-

load case) was obtained for a region in Texas at 32.00◦N/102.10◦W. The latter was used

as P dL,k to compute PL(k, rk) = P dL,k + rk, where rk ∈ [rL, rU ] is a truncated normal ran-

dom variable with mean zero and 100 W standard deviation. Truncation is required to

satisfy Assumption 2.3.1, but [rL, rU ] can be chosen arbitrarily large so that little error

is introduced. Interestingly, the differentiability analysis below requires [rL, rU ] to be suf-

ficiently large ([−103, 103] proves to be adequate). Irradiation data are used to compute

daily clearness indices, from which stochastic hourly indices κk ∈ [0, 1] are generated by an

ARMA(1,0) process κk = ρκk−1 + εk with Gaussian white noise εk as in [118]. Each κk is

used to compute irradiation on a tilted PV panel at time k as in [115] with tilt and az-

imuth angles of 32◦ and −1◦, and ground reflectance 0.6. PPV is correlated to the resulting

irradiation as in [73] with de-rating factor 0.95. These models define a smooth nonlinear

relation PN (k,wk, θ). Assumption 2.3.1 holds for ω := (s0, w0, . . . , wN−1) with s0 sampled

uniformly in [0, 1] because rk and κk are bounded and have continuous probability densities.

For simplicity, we do not consider correlations between rk and κk.

Fig. 2.2 shows the logic for two EMPs based on common heuristics [16]. At the

beginning of hour k, both EMPs first determine the diesel generator status dk using the

threshold s̃ (which is a decision variable). In EMP2, s̃ is compared to s′ := sk, with the

result that dk = 1 (on) if s′ ≤ s̃ and dk = 0 (off) otherwise. These cases correspond to the

discrete modes σk,1 = 1 and σk,1 = −1 in (2.1)–(2.2), as shown in Fig. 2.2. In contrast,

EMP1 assumes that PN (k,wk, θ) is known immediately at time k, and hence compares s̃ to

s′ := sk + PN (k,wk, θ)/CB, which is the value sk+1 will take if dk = 0. After dk is decided,

both EMPs check another set of conditions to ensure that the battery SOC remains within

its operating limits [s, s] := [0.4, 1]. In Fig. 2.2, s′′ is the value that sk+1 will take if the

battery is able to supply or store the power dkPD + PN (k,wk, θ). If s′′ ∈ [s, s] (σk,2 = −1

and σk,3 = 1), then the SOC is updated to sk+1 = s′′. Otherwise, there is an excess

(σk,2 = σk,3 = −1) or deficit (σk,2 = σk,3 = 1) of power that must be curtailed or dumped,
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and sk+1 takes one of the values s or s. Any deficit is recorded as the unmet demand,

uk kW. After execution of the EMP, the stage cost is computed as `S = βDdk + βUuk,

where βD=$7.52/h is the diesel fuel and operating cost and βU=$0.60/kWh is a penalty for

unmet demand to enforce reliability. The event functions hi in (2.1) are explicitly given in

Table 2.1, while f and `s in (2.2)–(2.3) are given in Table 2.2. Note that hi and f satisfy

Assumption 2.3.2. The total cost ` for 25 years of operation is

`(θ,ω) = 25
∑8759

k=0 `S(k, σk, sk, wk, θ) + `T (sN , θ), (2.30)

with `T (sN , θ) = αPV CPV +αD+αBCB, where αPV = $2.941×103/kW, αD = $2.63×104,

and αB = $1.185× 103/kWh are, respectively, the capital costs of the PV, diesel generator,

and battery, including expected replacements.

s′ := sks′ := sk + PN (k,wk, θ)/CB

s′ ≤ s̃

s′′ := sk + (dkPD + PN (k,wk, θ))/CBdk = 0 dk = 1

s′′ ≤ ss′′ ≤ s s′′ ≤ s

sk+1 = s
uk = 0

sk+1 = s
uk = (s− s′′)CB

sk+1 = s′′

uk = 0

EMP2EMP1

no

σk,1 = −1

yes

σk,1 = 1

yes

σk,2 = 1

no

σk,2 = −1no

σk,3 = −1

yes

σk,3 = 1

yes σk,3 = 1

Figure 2.2: Energy Management Policies EMP1 and EMP2. Decisions in � blocks and σk,i
values correspond to the event functions hi ≤ 0 and σk,i values in (2.1).

Table 2.1: Explicit expressions for the event functions hi in (2.1) corresponding to Fig. 2.2

h1 sk + PN (k,wk, θ)/CB − s̃ for EMP1 and sk − s̃ for EMP2

If σk,1 = −1 If σk,1 = 1

h2 sk + PN (k,wk, θ)/CB − s sk + (PD + PN (k,wk, θ))/CB − s
h3 sk + PN (k,wk, θ)/CB − s sk + (PD + PN (k,wk, θ))/CB − s

Figure 2.3 illustrates the key difference in regularity between `(ω, ·) and

L = E[`(ω, ·)] that motivates the analysis in §2.5. With CPV = 20 kW and CB = 350
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Table 2.2: Explicit expressions for the state update function f in (2.2) and the stage
cost `S in (2.3) for every permissible value of σk = (σk,1, σk,2, σk,3). We abbreviate
PN := PN (k,wk, θ).

σk f(k, σk, xk, wk, θ) `s(k, σk, xk, wk, θ)

(1,-1,1) sk + (PD + PN )/CB βD
(1,-1,-1) s βD
(1,1,1) s βD + βuCB(s− sk − (PD + PN )/CB)

(-1,-1,1) sk + PN/CB 0

(-1,-1,-1) s 0

(-1,1,1) s βuCB(s− sk − PN/CB)

0.45 0.5 0.55 0.6 0.65 0.7
0.9

0.95

1

s̃

(a)

0.45 0.5 0.55 0.6 0.65 0.7
0.9

0.95

1

s̃

(b)

Figure 2.3: Fractional diesel run-time (◦), normalized unmet demand (4), and normalized
operational cost (�) versus s̃ with a fixed ω (left) and averaged over 104 random ω’s (right).

kWh fixed, the left panel shows `(ω̂, ·) versus s̃ for a single scenario ω̂, while the right

shows L approximated using 104 random samples of ω (for clarity, only operating costs for

1 week in summer are shown). Discontinuities in ` arise from the choice of dk in Fig. 2.2,

which leads to discrete changes in the cumulative diesel generator hours and the unmet

demand as s̃ is varied. In general, each decision in the EMP can introduce one surface

of discontinuity in `(ω̂, ·) in every hour of the year. Clearly, this precludes the use of

gradient-based optimization. In contrast, L appears to be smooth (although it is notably

nonconvex). In §2.6.2–2.6.3, we apply the results of §2.5 to prove that L is in fact smooth

with one minor exception for EMP1. We assume throughout that

0 ≤ s < s̃ < s ≤ 1. (2.31)
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2.6.2 Verification of Sufficient Differentiability Conditions for EMP1

Choose any k ∈ K, σ ∈ Snσ , θ ∈ Θ̃, and (z, w) ∈ M(k, σ, θ). We show that

Condition 3.4.1 holds, and that Condition 2.5.2 holds provided that θ satisfies

s− s̃ 6= PD/CB. (2.32)

Thus, by Theorem 2.5.1, L is continuous at θ and, under (2.32), is C1 there.

Recall that w = (r, κ) and PN (k,w, θ) = PPV (k, κ, CPV )− PL(k, r). Thus, every hi

in Table 2.1 satisfies

∂hi
∂w

=
1

CB

∂PN
∂w

=
1

CB

[
−1

∂PPV
∂κ

]
6= [0 0] . (2.33)

This verifies Condition 3.4.1. However, it also shows that ∂hi
∂w and

∂hj
∂w are linearly dependent

for every i and j. Thus, to verify Condition 2.5.2.1, it must be shown that the event

hi = hj = 0 is impossible.

Case 1: h1 = h2 = 0. From Table 2.1, h1 = h2 implies s̃ = s − PD/CB if σk,1 = 1.

But PD/CB > 0, and so s̃ < s, which violates (2.31). Alternately, h1 = h2 implies s̃ = s if

σk,1 = −1, which also violates (2.31).

Case 2: h2 = h3 = 0. For any σk, this implies s = s which violates (2.31).

Case 3: h1 = h3 = 0. If σk,1 = −1, then s̃ = s, which is impossible

by (2.31). Otherwise, s̃ = s − PD/CB, which is excluded by the condition (2.32). ∂h1
∂x

∂h1
∂w

∂hi
∂x

∂hi
∂w

 =

 1 0 0

1 − 1
CB

1
CB

∂PN
∂κ

, rank

 ∂hi
∂w

eT
2

 = rank

 1
CB

1
CB

∂PPV
∂κ

0 1

 = 2

To verify Condition 2.5.2.2, choose any hi. With p = 2, (2.33) gives

rank

[
∂hi
∂w

eT2

]
= rank

[
− 1
CB

1
CB

∂PPV
∂κ

0 1

]
= 2, as required. For p = 1, we show that

it is impossible to have hi = 0 and w1 = r ∈ {rL, rU}. Using Table 2.1 and

PN (k,w, θ) = PPV (k, κ, CPV )− (P dL,k + r), hi(k, σ, z, w, θ) = 0 implies

z + C−1
B (dkPD + PPV (k, κ, CPV )− (P dL,k + r)) ∈ {s̃, s, s}, (2.34)
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for any dk ∈ {0, 1}. Thus, we pick [rL, rU ] large enough that (2.34) is impossible at its

endpoints. Noting that z, s̃, s, s ∈ [0, 1], it suffices that, ∀(κ, θ) ∈ [0, 1]× Θ̃,

min(|rL|, |rU |) ≥ |CB + PPV (k, κ, CPV )− P dL,k + PD|. (2.35)

By Theorem 2.5.1, L is continuous on Θ̃ and C1 at every θ ∈ Θ̃ with the possible

exception of one surface of discontinuity at (2.32). Thus, L is much more regular than

`(ω̂, ·), which exhibits 8760 discontinuities with fixed ω̂.

2.6.3 Verification of Sufficient Differentiability Conditions for EMP2

The event functions in EMP2 are the same as those in EMP1 except for h1. Thus,

(2.33) holds for all i 6= 1. However, ∂h1
∂w = [0 0] and so Conditions 3.4.1–2.5.2 fail. Therefore,

we must use Conditions 2.5.3–2.5.6 instead.

To verify Conditions 2.5.5–2.5.6, let k = 0 and choose any σ ∈ Snσ , θ ∈ Θ̃, and

(z, w) ∈ M(0, σ, θ). For any i ∈ {1, 2, 3}, ∂hi
∂x (k, σ, z, w, θ) = 1, so Condition 2.5.5 holds.

Condition 2.5.6.1 must be verified for the case h2 = h3 = 0 and the cases h1 = hi = 0,

i ∈ {2, 3}. By Table 2.1, the first case implies s = s which violates (2.31). For the

latter cases, Table 2.1 and (2.33) give

[
∂h1
∂x

∂h1
∂w

∂hi
∂x

∂hi
∂w

]
=
[

1 0 0

1 − 1
CB

1
CB

∂PN
∂κ

]
, which has rank 2

as required. For Condition 2.5.6.2, suppose hi = 0 for some i ∈ {1, 2, 3} and note that[
∂hi
∂x

∂hi
∂w

eTp

]
=

[
1
∂hi
∂w1

∂hi
∂w2

eTp

]
. If p ∈ {2, 3}, then this matrix has rank 2 as required. If p = 1

and i ∈ {2, 3}, then (2.33) again implies that this matrix has rank 2. Finally, if p = 1 and

i = 1, then s0 = s̃ and s0 ∈ {sL0 , sU0 } = {s, s}, which violates (2.31).

To verify Conditions 2.5.3–2.5.4, choose any k > 0, σ−, σ ∈ Snσ , θ ∈ Θ̃, and

(z−, z, w−, w) ∈M2
f (k, σ−, σ, θ). We first show the following implications:

h1 = 0 =⇒ z /∈ {s, s} and ∂f
∂w (∗) =

[
− 1
CB

1
CB

∂PN
∂κ

]
, (2.36)

hi(∗) = 0, i ∈ {2, 3}, =⇒ z ∈ {s, s}, (2.37)
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where all functions are evaluated at (k, σ, z, w, θ) unless marked with

(∗) := (k − 1, σ−, z−, w−, θ). By Definition 2.5.2, z = f(∗). If h1 = 0, then s̃ = z = f(∗).

Then, by (2.31) z = f(∗) /∈ {s, s}, and it follows from Table 2.2 and the definition of PN

that f must satisfy (2.36). To see (2.37), consider Fig. 2.2 at k− 1. If, e.g., h2(∗) = 0, then

s′′ = s and, regardless of σ−,2, the outcome is z = f(∗) = s′′ = s. An analogous argument

shows that z = s if h3(∗) = 0.

For i ∈ {2, 3}, Condition 2.5.3 holds because ∂hi
∂w 6= 0 by (2.33). For i = 1, ∂hi

∂x = 1

and ∂f
∂w (∗) 6= 0 by (2.36), so Condition 2.5.3 again holds. (2.31).

Condition 2.5.4.1 must be verified for h2 = h3 = 0 and the cases h1 = hi = 0,

i ∈ {2, 3}. The first case implies s = s, which contradicts (2.31). For the latter cases (2.33)

gives

[
∂h1
∂x

∂f
∂w

(∗) ∂h1
∂w

∂hi
∂x

∂f
∂w

(∗) ∂hi
∂w

]
=

[
∂f
∂w

(∗) 0 0
∂f
∂w

(∗) − 1
CB

1
CB

∂PN
∂κ

]
. But ∂f

∂w (∗) 6= 0 by (2.36), so this matrix has

rank 2 as required.

For Condition 2.5.4.2, choose i, j ∈ {1, 2, 3} and suppose that hi = 0, hj(∗) = 0,

∂hi
∂w = 0, and

∂hj
∂w (∗) 6= 0. From Table 2.1, the only i and j consistent with these requirements

are i = 1 and j ∈ {2, 3}. But these cases are impossible because the conclusions of (2.36)

and (2.37) are mutually exclusive.

For Condition 2.5.4.3, suppose that hi = 0 for some i ∈ {1, 2, 3} and note that[
∂hi
∂x

∂f
∂w

∂hi
∂w

eTp

]
=

[
∂f
∂w1

∂f
∂w2

∂hi
∂w1

∂hi
∂w2

eTp

]
. From (2.36) and (2.33) it is simple to show that

this matrix has rank 2 for the following cases: i = 1 and p ∈ {2, 3, 4}, i ∈ {2, 3} and

p = {1, 2, 4}. We show that the remaining cases cannot occur. If i = 1 and p = 1, then

s̃ = z, r− ∈ {rL, rU}, and by (2.36) and Table 2.2,

s̃ = z = f(∗) = z− + C−1
B (dk−1PD + PN (k − 1, w−, θ)) , (2.38)

where dk−1 = 1 if σ−,1 = 1 and dk−1 = 0 otherwise. But, using the definition of PN and

s̃ − z− ∈ [−1, 1], it is simple to show that this contradicts (2.35). Finally, if p = 3 and
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i ∈ {2, 3}, then r ∈ {rL, rU} and hi = 0 implies

z + C−1
B (dkPD + PN (k,w,θ)) ∈ {s, s}, (2.39)

where dk = 1 if σ1 = 1 and dk = 0 otherwise. But again, noting that s− z, s− z ∈ [−1, 1],

it is straightforward to show that this contradicts (2.35). Thus, Conditions 2.5.3–2.5.6 hold

and L ∈ C1(Θ̃,R) by Theorem 2.5.1.

2.6.4 Optimization Results

This section illustrates the advantages of exploiting differentiability to minimize

L(θ) = E[`(ω, θ)]. First, consider the case with no annual load increase and only 3 de-

cisions θ = (CB, CPV , s̃) with feasible set Θ = [θL, θU ], where θL = (10, 10, 0.41) and

θU = (1.5 × 103, 1.5 × 103, 0.99). We use a year-long stochastic simulation with EMP2 to

evaluate `(ω, θ). Although this problem seems very simple, a typical MILP formulation

requires integer variables to describe the diesel status in each hour of the year and each

scenario ω. In fact, CPLEX 12.6 required more than 12 hours to solve this problem with

only a single scenario and a horizon of N = 120 (5 days). Here, we solve the problem as an

expected value minimization subject to a DTSHS using stochastic gradient-descent (SGD).

We implement SGD as θj+1 = Ψ [θj + αjdj ], where Ψ [y] is the projection of y onto Θ, αj is

the step-size, and the search direction is dj = − DG(ω,θj)
‖DG(ω,θj)‖ , where D = diag(105, 106, 0.1) is a

scaling matrix and G(ω, θj) is a finite-difference (FD) approximation of∇L(θj). Specifically,

in each iteration j, we generate a random ω̂j and compute

Gi(ω̂j , θj) = (2δi)
−1[`(ω̂j , θj + eiδi)− `(ω̂j , θj − eiδi)], (2.40)

with δ = (12.5, 5.3, 0.1). Although this looks like an FD approximation of `(ω̂j , ·), which

may not be differentiable at θj , it is an unbiased estimator of the divided difference

(2δi)
−1[L(θj + eiδi)− L(θj − eiδi)], which can be made arbitrarily close to the true deriva-

tive of L since L ∈ C1(Θ̃,R). The step size αk is determined using bisection to satisfy the

45



Armijo inequality

`(ω̂k, θk)− `(ω̂k, θk + αkdk) ≥ −ραkG(ω̂k, θk)
Tdk, ρ = 0.02. (2.41)

Since Gi(ω̂j , θj) may not be a descent direction for every ω̂j , the line search may fail

(i.e., αk < 10−6) away from a local minimum, in which case ω̂j is re-sampled. The

algorithm terminates if either (a) the line search fails more than 6 times, (b) for any

j > 6, 1
6

∑j
n=j−6 |θn+1,i − θn,i| ≤ Ti, ∀i ∈ {1, 2, 3}, where T = (0.5, 0.5, 0.006), or (c)

1
6

∑j
n=j−6 |`(ω̂n+1, θn+1)− `(ω̂n, θn)| ≤ 500.

Figure 2.4 compares our SGD results with the particle swarm optimization (PSO)

code particleswarm and the genetic algorithm (GA) code ga in MATLAB R2015a. The

initial population size was 20 and 50 for particleswarm and ga, respectively. With default

settings for other parameters, the solvers terminated when the relative change in the best

objective value was less than 10−6 in the last 20 iterations for PSO and 50 generations

for GA. Because these algorithms are stochastic and L may have several local minima,

all algorithms were initiated at 100 random initial guesses and L(θmin) was estimated at

each solution using 1000 random ω’s. PSO terminated with L(θmin) = $2.16 × 106 for

all initial guesses. This was the best point found by any solver. SGD terminated at this

point often, but also frequently found two other points with L(θmin) = $2.17 × 106 and

L(θmin) = $2.3× 106. All three were visually confirmed to be local minima, indicating that

SGD performs as expected. In contrast, GA terminated at arbitrary non-stationary points in

about 20% of cases. Most importantly, the average number of function evaluations required

by the solvers varied greatly: 1860 for PSO, 6560 for GA, and only 500 for SGD, including

the evaluations for computing G and executing line search. Since the optimization time

is dominated by function evaluations, which take approximately 0.36s1, our rudimentary

gradient-based algorithm provides speed-ups of 13× over a mature GA code and 3.7× over

PSO. Moreover, at 180 CPUs, the SGD solution time using year-long simulations is 240×
1Dell Precision T3600, 3.0 GHz Intel Xeon, 4GB RAM, Windows 7, MATLAB R2015a
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Figure 2.4: Frequency of solutions found by PSO, GA, and SGD out of 100 initial guesses
versus the corresponding expected costs (million dollars).
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Figure 2.5: Detailed operation of the optimal system over 7 days in September. Squares
indicate the diesel on (1) and off (0) statuses.

faster than solving the MILP formulation discussed above over only 5 days. The operation

of the optimal system is demonstrated in Fig. 2.5.

To test SGD on larger problems, we considered two extensions. First, we split the

year into 40 periods of 219 h and allowed a distinct threshold s̃ in each, resulting in 42

decisions in total. PSO and SGD found similar ranges of solutions, with the best having

L(θmin) = $1.81 × 106 at (CPV , CB)=(149,506) for SGD and (144,511) for PSO. Fig. 2.6

shows the optimal thresholds, which are high in summer (indicating more diesel use) due to

high cooling demands in Texas. Computationally, SGD again outperformed PSO, but by a

smaller margin, requiring 1123 function evaluations versus 3800 for PSO.

Next, we considered an expansion planning problem with five investment periods

over a 25 years. Capacities CPV and CB are purchased at the start of period 1 and allowed

to increase in each successive period. We used a distinct threshold s̃ in each period, making

15 decisions in total. We used data for 32.45◦N and 112.10◦W (Arizona) with a constant

interest rate of 6%/yr (for investment discounting) and a load growth rate of 8%/yr.
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Figure 2.7: Frequency of solutions found by PSO and SGD out of 100 initial guesses versus
the corresponding expected costs (million dollars) for the expansion planning problem.

Note that planning models based on load duration curves are not applicable here

because they ignore the chronology of the load and resource profiles [64]. Here, dispatching

decisions are coupled through the battery SOC, and their costs must be evaluated by hourly

simulations, as in Fig. 2.5. Nonetheless, we opted to consider only two weeks from each

season of each year, or 3.36×104 h in total, which is common in expansion planning models

with discrete decisions at the hourly level [37, 104, 105] and reduces our simulation times

by about 6.5×.

Fig. 2.7 shows that both PSO and SGD find several local minima, with the best

found most frequently. SGD is again much faster, with 2918 function evaluations on average

versus 17152 for PSO. Table 2.3 shows the best expansion plans for both solvers. Capacity

grows considerably until the fourth period, where investments drop off. Moreover, the EMP

thresholds increase after the first stage, meaning that the system is favoring more frequent

use of the diesel.
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Table 2.3: Optimal expansion plans found by PSO and SGD over 5 investment periods

PSO SGD

Period 1 2 3 4 5 1 2 3 4 5

CPV 67.8 89.8 127.8 13.90 0 65.0 92.9 124.0 13.4 0
CB 70.7 243 0 0 0 71.3 211.0 0 0 0
s̃ 0.70 0.94 0.95 0.94 0.94 0.64 0.94 0.95 0.94 0.89

2.7 Conclusions

This chapter analyzed the regularity of expected costs associated with stochastic

hybrid systems. The main results are two sets of sufficient conditions for continuous dif-

ferentiability of such functions. The first is a special case of the second that is simpler to

verify in practice. These conditions were successfully applied to a representative microgrid

optimization problem, suggesting that many problems of interest are smooth in expectation,

even while sample-average approximations are discontinuous. This is important because it

enables the use of gradient-based algorithms that can potentially achieve higher solution

quality and efficiency than the derivative-free algorithms that currently dominate the mi-

crogrid literature. Significant gains were achieved here using a simple stochastic gradient

descent algorithm. General purpose algorithms and more comprehensive comparisons will

be considered in future work.
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2.8 Appendix

2.8.1 Introduction

The purpose of this appendix is to provide a self-contained proof of Theorem 2.4.1.

To simplify notation, we redefine some nomenclature with obvious correlations. Let Ω̃ ⊂ Rnω

and Θ̃ ⊂ Rnθ be open sets, let ψ ∈ C1(Ω̃ × Θ̃,Rnψ), and let g : Ω̃ × Θ̃ → R be continuous

and satisfy g(·, ω) ∈ C1(Θ̃,R), ∀ω ∈ Ω̃. Furthermore, define

G(θ) :=

∫
Ω(θ)

g(ω, θ)µ(dω), (2.42)

Ω(θ) := {ω ∈ Ω̃ : ψ(ω, θ) ≤ 0}, (2.43)

∂iΩ(θ) := {ω ∈ Ω(θ) : ψi(ω, θ) = 0}, ∀i ∈ {1, . . . , nψ}, (2.44)

∂iΩ̃(θ) := {w ∈ Ω̃ : ψi(ω, θ) = 0}, ∀i ∈ {1, . . . , nψ}. (2.45)

Assumption 2.8.1. ∃ΩC ⊂ Ω̃ compact and such that Ω(θ) ⊂ ΩC , ∀θ ∈ Θ̃.

Assumption 2.8.2. For every θ ∈ Θ̃ and each i, ‖∂ψi∂ω (ω, θ)‖ > 0, ∀ω ∈ ∂iΩ(θ).

Assumption 2.8.3. For every θ ∈ Θ̃ and every i and j with i 6= j, ∂ψi
∂ω (ω, θ) and

∂ψj
∂ω (ω, θ)

are linearly independent for all ω ∈ (∂iΩ(θ) ∩ ∂jΩ(θ)).

In the following sections, it will be proven that G is continuous on Θ̃ under Assump-

tions 2.8.1–2.4.1, and G ∈ C1(Θ̃,R) under Assumptions 2.8.1–2.4.2. These results establish

Theorem 3.1 because L is a finite sum of integrals of the form (2.42) by Lemmas 2.3.2 and

2.3.4. Moreover, Assumptions 2.8.2–2.8.3 are exactly Assumptions 2.3.1–2.3.2 with minor

changes in notation, and Assumption 2.8.1 holds with ΩC := Ω.

2.8.2 Continuity of the Volume Integral G on Θ̃

In the following developments, we use the notations A+B := {a+b : a ∈ A, b ∈ B}

and A\B := {a ∈ A : a /∈ B}. Recall also that Bδ(y) denotes the open ball of radius δ

about y. Finally, we denote the closure of A ⊂ Rn by clA.
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Lemma 2.8.1. Choose any θ∗ ∈ Θ and δ > 0, and define

N∗δ = ∪nψi=1∂iΩ(θ∗) +Bδ(0), M∗δ = ΩC\N∗δ , K∗δ = M∗δ ∩ Ω(θ∗). (2.46)

Under Assumption 2.8.1, ∃η > 0: K∗δ ⊂ Ω(θ) ⊂ (K∗δ ∪N∗δ ), ∀θ ∈ Bη(θ∗).

Proof Since N∗δ is open, its complement is closed, and hence M∗δ is compact. Define

r(ω, θ) := maxi(ψi(ω, θ)). If ω ∈ M∗δ , then either ω ∈ K∗δ , in which case r(ω, θ∗) < 0, or

ω /∈ Ω(θ∗), in which case r(ω, θ∗) > 0. Thus, for each ω ∈M∗δ , |r(ω, θ∗)| > 0 and continuity

implies that ∃γω, ηω > 0 such that |r| > 0 on Bγω(ω) × Bηω(θ∗). Note that r < 0 on

Bγω(ω)×Bηω(θ∗) if ω ∈ K∗δ , and r > 0 otherwise. Since M∗δ is compact and covered by the

sets Bγω(ω), there exists a finite subcover indexed by ωi, i = 1, . . . , N . Let γi := γωi and

ηi := ηωi .

We show by contradiction that the result holds with η = mini ηi > 0. Choose any

θ ∈ Bη(θ∗) and suppose K∗δ 6⊂ Ω(θ). Then ∃ω ∈ K∗δ with r(ω, θ) > 0. But ω ∈ K∗δ and

θ ∈ Bη(θ
∗) imply that (ω, θ) belongs to some Bγi(ωi) × Bηi(θ

∗) on which r < 0, which

is a contradiction. Next, suppose that Ω(θ) 6⊂ (K∗δ ∪ N∗δ ). Then, ∃ω ∈ Ω(θ) such that

ω /∈ N∗δ and ω /∈ K∗δ . The first of these inclusions implies that r(ω, θ) ≤ 0, while the second

implies that ω ∈ M∗δ . But ω ∈ M∗δ \K∗δ and θ ∈ Bη(θ∗) imply that (ω, θ) belongs to some

Bγi(ωi)×Bηi(θ∗) on which r > 0, which is again a contradiction.

Corollary 2.8.1. For any i ∈ {1, . . . , nψ}, θ∗ ∈ Θ̃, and δ > 0, under Assumption 2.8.1,

∃η > 0 such that ∂iΩ(θ) ⊂ ∂iΩ(θ∗) +Bδ(0), ∀θ ∈ Bη(θ∗).

Proof From the proof of Lemma 2.8.1, r < 0 on K∗δ ×Bη(θ∗), and hence ∂iΩ(θ) does

not intersect K∗δ . Then, since ∂iΩ(θ) ⊂ Ω(θ), it follows from the conclusion of Lemma 2.8.1

that ∂iΩ(θ) ⊂ N∗δ .

Theorem 2.8.1. Under Assumptions 2.8.1–2.4.1, G is continuous on Θ̃.

Proof Choose any θ∗ ∈ Θ̃ and any ε > 0. Choose ηC > 0 such that BηC (θ∗) ⊂ Ω̃ and

let gC be an upper bound for |g| on ΩC × clBηC (θ∗). By Lemma 2.3.3, N∗ := ∪i∂iΩ(θ∗) has
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measure zero, and so is contained in an open set O with µ(O) ≤ ε
2gC

. Since N∗ is compact,

we may choose δ > 0 small enough that N∗δ := N∗ + Bδ(0) ⊂ O, and hence µ(N∗δ ) ≤ ε
2gC

.

Choose η ≤ ηC satisfying Lemma 2.8.1 with this δ, and note that

G(θ) =

∫
K∗δ

g(ω, θ)µ(dω) +

∫
Ω(θ)\K∗δ

g(ω, θ)µ(dω), ∀θ ∈ Bη(θ∗). (2.47)

The first term on the right is continuous at θ∗ by Theorem 3.103 in [119]. It remains to

show continuity of the second term. But, by Lemma 2.8.1,

∣∣∣∣∣
∫

Ω(θ∗)\K∗δ
g(ω, θ∗)µ(dω)−

∫
Ω(θ)\K∗δ

g(ω, θ)µ(dω)

∣∣∣∣∣ ≤ 2

∫
N∗δ

gCµ(dω), (2.48)

with 2
∫
N∗δ
gCµ(dω) = 2gCµ(N∗δ ) ≤ ε for all θ ∈ Bη(θ∗) by construction.

2.8.3 Surface Measure and Integrals

In §2.8.4, we present an essential result of Kibzun and Uryasev [112] showing that

G is differentiable under Assumptions 2.8.1–2.4.2, and that the derivative can be expressed

in terms of surface integrals over the sets ∂iΩ(θ). In this section, these surface integrals

are formalized and some properties are established. In general, we follows the standard

procedure for defining surface integrals over differentiable manifolds using local coordinate

patches and a partition of unity [120]. However, under the standard development, one

obtains distinct coordinate patches and partitions of unity corresponding to each ∂iΩ(θ)

with θ ∈ Θ̃, making it impossible to analyze how the surface integral itself varies with θ.

Here, we modify the standard development to show that one can construct a single, finite

partition of unity, dominating a finite set of θ-dependent coordinate patches, which can

be used to express the surface integral over all ∂iΩ(θ) with θ in a sufficiently small ball

around some θ∗ ∈ Θ̃. As a result, we are able to extend the result of Kibzun and Uryasev

by establishing continuous differentiability of G (Theorem 2.8.3). This construction is the

content of the following lemma.
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Lemma 2.8.2. Choose any θ∗ ∈ Θ̃ and i ∈ {1, . . . , nψ}. For any δ > 0, denote

N∗δ,i := ∂iΩ(θ∗)+Bδ(0). Under Assumptions 2.8.1–2.4.1, there exists η, δ > 0 and functions

αj ∈ C1(Ej × Bη(θ∗),Rnω) and φj ∈ C1(Rnω ,R+), ∀j ∈ {1, . . . , l}, such that the following

conditions hold ∀θ ∈ Bη(θ∗) and every j:

1.
∑l

j=1 φj(ω) = 1, ∀ω ∈ N∗δ,i.

2. φj(ω) ≥ 0, ∀ω ∈ Rnω , and φj(ω) = 0 outside of a compact rectangle Sj.

3. ∂iΩ(θ) ⊂ N∗δ,i.

4. Ej ⊂ Rnω−1 is open, αj(·, θ) is 1-to-1 on Ej, α−1
j (·, θ) is continuous on

Vj(θ) := αj(Ej , θ), and Vj(θ) is an open subset of ∂iΩ̃(θ).

5.
∂αj
∂ξ (ξ, θ) has full rank ∀ξ ∈ Ej.

6. α−1
j (Sj ∩ Vj(θ), θ) is a compact rectangle in Ej and Sj ∩ ∂iΩ̃(θ) ⊂ Vj(θ).

Proof Choose ω ∈ ∂iΩ(θ∗). By Assumption 2.4.1, ∂ψi∂ω (ω, θ∗) has at least one nonzero

component. Assume w.l.o.g. that ω = (γ, ξ), γ ∈ R, and ∂ψi
∂γ (ω, θ∗) 6= 0. Then, by the

Implicit Function Theorem (Theorem 9.2 in [120]), there exist open balls Eω, Tω, and Gω

about ξ, θ∗, and γ, respectively, and hω ∈ C1(Eω × Tω, Gω) such that, ∀(ξ′, θ′) ∈ Eω × Tω,

γ′ := hω(ξ′, θ′) is the unique element of Gω satisfying ψi((γ
′, ξ′), θ′) = 0.

Let A be the union of the sets Gω × Eω, ∀ω ∈ ∂iΩ(θ∗). By Theorem 16.3 in [120],

there exists a countable partition of unity, φj ∈ C∞(Rω,R+), ∀j ∈ N, such that
∑∞

j=1 φj = 1

on A, each φj is positive and is zero outside of a compact rectangle Sj contained entirely

in some Gω × Eω, and each ω ∈ A has a neighborhood that intersects only finitely many

Sj ’s. We make this partition finite on a compact subset of A as follows. Since A is open

and ∂iΩ(θ∗) compact, we may choose δ > 0 small enough that N∗δ,i ⊂ A. Now, the closure

clN∗δ,i is compact, and every ω ∈ clN∗δ,i has a neighborhood intersecting only finitely many

Sj ’s. This forms a cover of clN∗δ,i, and the existence of a finite subcover implies that clN∗δ,i

itself intersects only finitely many Sj ’s. Indexing these from 1 to l, Conditions 1 and 2 are

proven.
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For each j ∈ {1, . . . , l}, we have established that there exists some Gω × Eω con-

taining Sj . Denote this neighborhood by Gj × Ej , and let hj ∈ C1(Ej × Tj , Gj) be the

corresponding implicit function. Define T = ∩lj=1Tj , which is an open neighborhood of θ∗.

By Corollary 2.8.1, ∃η > 0 such that Bη(θ
∗) ⊂ T and Condition 3 holds for all θ ∈ Bη(θ∗).

For each j ∈ {1, . . . , l}, define αj ∈ C1(Ej × Bη(θ∗),Rnω) by αj(ξ, θ) := (hj(ξ, θ), ξ). Evi-

dently, αj(·, θ) is 1-to-1 and α−1
j (·, θ) is continuous on Vj(θ) := αj(Ej , θ), for all θ ∈ Bη(θ∗).

Moreover, since α(·, θ) maps into ∂iΩ̃(θ), continuity of the inverse proves that Vj(θ) is open

there, so Condition 4 holds. From the definition of α, it is also clear that
∂αj
∂ξ (·, θ) is full

rank (i.e., nω − 1) on Ej , so Condition 5 holds.

To arrange for Condition 6, denote Sj := GSj ×ESj ⊂ Ej×Gj and note that hj(E
S
j , T

′)

is a compact interval in Gj ⊂ R for any compact neighborhood T ′ of θ∗ contained in Bη(θ
∗).

Thus, we may redefine (if necessary) GSj , and hence Sj , so that GSj is a compact interval in

Gj containing hj(E
S
j , T

′) in its interior, and restrict η so that Bη(θ
∗) ⊂ T ′. Note that this

modification does not invalidate Condition 2, and it now holds that

α−1
j (Sj ∩ Vj(θ)) = {ξ ∈ Ej : (hj(ξ, θ), ξ) ∈ GSj × ESj } = ESj , (2.49)

for all θ ∈ Bη(θ∗). Finally, to show that Sj ∩ ∂iΩ̃(θ) ⊂ Vi(θ), choose any θ ∈ Bη(θ∗) and

ω = (γ, ξ) ∈ Sj∩∂iΩ̃(θ). By construction, θ ∈ Tj and (γ, ξ) ∈ Gj×Ej . Thus, by the Implicit

Function Theorem, γ′ := hj(ξ, θ) is the unique element of Gj satisfying ψi(γ
′, ξ, θ) = 0, and

hence γ′ = γ. It follows that αj(ξ, θ) = (γ, ξ) ∈ Vj(θ).

Definition 2.8.1. Choose θ∗ ∈ Θ̃, i ∈ {1, . . . , nψ}, and let η, δ, αj , Ej , Vj(θ), and l be as in

Lemma 2.8.2. For any θ ∈ Bη(θ∗), a set Q ⊂ ∂iΩ(θ) is µsi (·, θ)-measurable if α−1
j (Q∩Vj(θ), θ)

is Lebesgue measurable in Rnω−1, ∀j ∈ {1, . . . , l}. For any µsi (·, θ)-measurable Q, define the

surface integral of g over Q as

∫
Q
g(ω, θ)µsi (dω, θ) :=

l∑
j=1

∫
α−1
j (Q∩Vj(θ),θ)

[(φjg) ◦ αj(ξ, θ)]V (Dαj)µ(dξ), (2.50)
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where V (Dαj) :=

(
det
(
∂αj
∂ξ

)T (∂αj
∂ξ

))1/2

is a differential volume element.

Remark 2.8.1. Concerning the integrals on the right-hand side of (2.50), note that Q is in

N∗i,δ by Condition 3 of Lemma 2.8.2. Then, using Condition 1 as well, g(ω) =
∑l

j=1(φjg)(ω),

∀ω ∈ Q. Since each term in this sum is zero outside of the corresponding Sj , the domain

of integration for each term can be restricted to any superset of Q ∩ Sj . To perform the

integration, this domain must be ‘pulled back’ into Rnω−1 using the local coordinate patch

αj . This requires that the image Vj(θ) covers Q∩Sj , which holds by Condition 6 of Lemma

2.8.2.

Remark 2.8.2. The surface measure of Q ⊂ ∂iΩ(θ) is naturally defined as

µsi (Q, θ) :=
∫
Q µ

s
i (dω, θ), and is zero if an only if α−1

j (Q ∩ Vj(θ), θ) has Lebesgue measure

zero in Rnω−1, ∀j ∈ {1, . . . , l}.

Remark 2.8.3. For any θ ∈ Θ̃, there may be multiple choices of θ∗ with θ ∈ Bη(θ∗), and

hence multiple definitions of the surface measure and integral on ∂iΩ(θ). Nevertheless, since

choosing an alternative θ∗ simply amounts to covering ∂Ωi(θ) by an alternative partition of

unity and collection of coordinate patches, Definition 2.8.1 is unambiguous and independent

of θ∗ (see §25 in [120]).

In order to define the surface integral of g over ∂iΩ(θ) itself, it remains to ensure

that this set is µsi (·, θ)-measurable.

Lemma 2.8.3. Let Assumptions 2.8.1–2.4.2 hold, choose θ∗ ∈ Θ̃ and i ∈ {1, . . . , nψ},

and let η, δ, αj, Ej, Vj(θ), and l be as in Lemma 2.8.2. Choose any j ∈ {1, . . . , l},

(ξ, θ) ∈ Ej ×Bη(θ∗), and k 6= i. If αj(ξ, θ) ∈ ∂iΩ(θ) ∩ ∂kΩ(θ), then ∂
∂ξψk(αj(ξ, θ), θ) 6= 0.

Proof If the implication fails, ∃(ξ, θ) ∈ Ej ×Bη(θ∗) such that ψ(αj(ξ, θ)) ≤ 0,

[
ψk(αj(ξ,θ),θ)
ψi(αj(ξ,θ),θ)

]
= 0, and

[
∂ψk
∂ω

(αj(ξ,θ),θ)
∂ψi
∂ω

(αj(ξ,θ),θ)

]
∂αj
∂ξ

(ξ, θ) = 0. (2.51)

The second row follows from Condition 4 of Lemma 2.8.2; i.e., ψi(αj(ξ
′, θ′), θ′) = 0,

∀(ξ′, θ′) ∈ Ej × Bη(θ∗). But, by Condition 5 of Lemma 2.8.2,
∂αj
∂ξ (ξ, θ) has rank nω − 1,
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which implies that the rank of the left-hand matrix in (2.51) is at most 1 (it’s range lies

in the one-dimensional left null space of
∂αj
∂ξ (ξ, θ)). But this contradicts Assumption 2.4.2

because αj(ξ, θ) ∈ ∂iΩ(θ) ∩ ∂kΩ(θ).

Theorem 2.8.2. Let Assumptions 2.8.1–2.4.2 hold. For every θ ∈ Θ̃ and i, k ∈ {1, . . . , nψ}

with i 6= k, ∂iΩ(θ) is µsi (·, θ)-measurable, µsi (∂iΩ(θ)∩∂kΩ(θ), θ) = 0, and the surface integral∫
∂iΩ(θ) g(ω, θ)µsi (dω, θ) is continuous at θ.

Proof Choose θ ∈ Θ̃, i ∈ {1, . . . , nψ}, and let and let η, δ, αj , Ej , Vj(θ), and l be as

in Lemma 2.8.2. For any θ ∈ Bη(θ∗), ∂iΩ(θ) is µsi (·, θ)-measurable if α−1
j (∂iΩ(θ) ∩ Vj(θ), θ)

is µ-measurable for all j. But for each j, ψi(αj(ξ, θ), θ) = 0, ∀ξ ∈ Ej , by definition, and

hence

α−1
j (∂iΩ(θ) ∩ Vj(θ), θ) = {ξ ∈ Ej : ψm(αj(ξ, θ), θ) ≤ 0, ∀m 6= i}. (2.52)

Moreover, for any k 6= i, α−1
j (∂iΩ(θ) ∩ ∂kΩ(θ) ∩ Vj(θ)) is exactly (2.52) with the ad-

ditional constraint ψk(αj(ξ, θ), θ) = 0. Thus, the right-hand side of (2.52) is a sys-

tem of inequalities that satisfies Assumption 2.4.1 by Lemma 2.8.3. It follows that

α−1
j (∂iΩ(θ) ∩ ∂kΩ(θ) ∩ Vj(θ)) has µ-measure zero in Rnω−1 by Lemma 2.3.3. Then, by

definition, ∂iΩ(θ) ∩ ∂kΩ(θ) has µsi (·, θ)-measure zero. Furthermore, observe that (2.52) can

be written as the union of the sets α−1
j (∂iΩ(θ) ∩ ∂kΩ(θ) ∩ Vj(θ), θ), for all k 6= i, with the

set {ξ ∈ Ej : ψm(αj(ξ, θ), θ) < 0, ∀m 6= i}. Since this last set is open, it is µ-measurable

in Rnω−1. Thus, (2.52) is µ-measurable because it is a union of µ-measurable sets, and it

follows that ∂iΩ(θ) is µsi (·, θ)-measurable.

Finally, continuity of the surface integral holds if each volume integral on the right-

hand side of (2.50) is continuous with Q = ∂iΩ(θ). Note that each of these integrals has

continuous integrand, and by Condition 2 of Lemma 2.8.2, its domain of integration can be

restricted to α−1
j (Q∩Sj ∩Vj(θ), θ) without affecting its value. Using Condition 6 of Lemma
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2.8.2, this restricted set is

{ξ ∈ ESj : ψm(αj(ξ, θ), θ) ≤ 0, ∀m 6= i}, (2.53)

where ESj is a compact rectangle. But (2.53) is a system of inequalities satisfying As-

sumption 2.8.1 with ΩC := ESj and satisfying Assumption 2.4.1 by Lemma 2.8.3. Thus,

continuity follows from Theorem 2.8.1.

2.8.4 Continuous Differentiability of the Volume Integral

In the following theorem, differentiability follows from the results of Kibzun and

Uryasev [112, 113], while continuity of the derivative follows from Theorem 2.8.2.

Theorem 2.8.3. Under Assumptions 2.8.1–2.4.2, G ∈ C1(Θ̃,R) and, ∀θ ∈ Θ̃,

∂G
∂θ

(θ) =

∫
Ω(θ)

∂g

∂θ
(ω, θ)µ(dω)−

nψ∑
i=1

∫
∂iΩ(θ)

g(ω, θ)∇θψi(ω, θ)
‖∇ωψi(ω, θ)‖

µsi (dω, θ). (2.54)

Proof Define G(θ, η) :=
∫

Ω(θ) g(ω, η)µ(dω), ∀(θ, η) ∈ Θ̃ × Θ̃. For any k, Theorem

3.104 in [119] shows that

∂G

∂ηk
(θ, η) =

∫
Ω(θ)

∂g

∂θk
(ω, η)µ(dω), ∀(θ, η) ∈ Θ̃× Θ̃. (2.55)

Furthermore, this derivative is continuous in Θ̃× Θ̃ by Theorem 2.8.1. Thus, by Theorem

6.2 in [120], G(θ, ·) ∈ C1(Θ̃,R), ∀θ ∈ Θ̃.

Now, by Theorem 2.4 in [112], G(·, η) is also differentiable and

∂G

∂θ
(θ, η) = −

nψ∑
i=1

∫
∂iΩ(θ)

g(ω, η)∇θψi(ω, θ)
‖∇ωψi(ω, θ)‖

µsi (dω, θ), (2.56)

for all ∀(θ, η) ∈ Θ̃ × Θ̃, and this derivative is continuous by Theorem 2.8.2. By a final

application of Theorem 6.2 in [120], G ∈ C1(Θ̃× Θ̃,R). Finally, by Theorem 5.1 in [120], G

is continuously differentiable and (2.54) holds.
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Chapter 3

Smooth-in-Expectation Decision

Rules: A New Approach for

Multistage Stochastic Programs

with Mixed-Integer Recourse

Decisions

3.1 Abstract

A new class of decision rules is presented for formulating tractable approximations

of nonlinear multistage stochastic programs (MSPs) with mixed-integer recourse decisions

and very many stages (i.e., hundreds). Such MSPs arise in smart manufacturing, renewable

energy systems, etc., and are notoriously difficult to solve with scenario-based approaches.

A promising alternative is to solve a decision-rule approximation (DRA) wherein recourse

decisions are replaced by functions of the random variables parameterized by additional

first-stage decisions. For MSPs with continuous recourse, such approximations can often
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be solved very efficiently. In stark contrast, MSPs with mixed-integer recourse require

discontinuous decision rules, resulting in generally intractable DRAs. To address this, we

introduce a general class of mixed-integer decision rules that, despite being discontinuous,

guarantee continuous differentiability of the DRA. Specifically, for nonlinear MSPs with

expected-value objectives and chance constraints over continuous random variables, we

establish conditions under which the integrals defining these functions are guaranteed to

smooth all discontinuities introduced by the decision rules. These conditions are not very

restrictive and are always satisfied by suitably randomized decision rules. When they hold,

the resulting DRA can be solved efficiently using gradient-based methods. This approach

is demonstrated for an integrated capacity planning and inventory control problem.

3.2 Introduction

This chapter presents a new class of decision rules for formulating tractable approx-

imations of nonlinear multistage stochastic programs (MSPs) with mixed-integer recourse

decisions and very many stages (i.e., hundreds or thousands). Specifically, we consider

a state-space MSP formulation with an expected-value objective function and stage-wise

chance constraints over continuous random variables. Such MSPs commonly arise in prob-

lems where long-term investment decisions (e.g., design and expansion planning) must be

integrated with operational decisions occurring on much shorter time scales and under sig-

nificant uncertainty (e.g., scheduling, unit commitment, and control) [18, 35, 36, 43, 100].

This work is specifically motivated by the smart manufacturing and smart grid paradigms,

which both emphasize the value of highly flexible systems that can optimally adapt to dy-

namic and uncertain operating environments. For systems such as microgrids, combined

heat and power plants, multiproduct chemical plants, and biorefineries, such adaptability

has tremendous potential to reduce costs and increase efficiency by exploiting real-time

markets, leveraging variable renewable energy sources and feedstocks, and accommodating

process variabilities and contingencies [25, 26].
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For highly flexible systems, the integration of design and operational decisions is crit-

ical because the value of an investment in, e.g., additional production or storage capacity, is

largely determined by the extent to which lower-level scheduling and control algorithms can

capitalize on this capacity to achieve more efficient operation [88]. Technically, this leads

to multistage stochastic programs (MSPs) with three uniquely challenging features. First,

relevant operational decisions often occur on time-scales much shorter than the lifetime of

an investment, resulting in MSPs with very many stages [15, 36–38]. For example, the value

of an energy storage system with a lifetime of 10 years may depend critically on its abil-

ity to enhance responsiveness to hourly variations in electricity pricing or renewable power

generation [36, 39]. Second, many critical operational decisions are discrete (e.g., adap-

tive scheduling and unit commitment) [10, 18, 36], resulting in MSPs with mixed-integer

recourse. Third, several important uncertainties are best described by continuous random

variables with significant variance, resulting in MSPs that are not easily approximated us-

ing few discrete scenarios (e.g., demands, natural resource availability, process yields, etc.)

[40–42].

These features make such MSPs notoriously difficult to solve using scenario-based

approximations (SBAs). In this approach, the continuous random variables (RVs) are ap-

proximated by a finite number of scenarios, which allows the recourse functions to be finitely

parameterized by their values in each scenario. Unfortunately, enforcing non-anticipativity

of the recourse decisions requires scenario trees that grow exponentially in the number of

stages [121], leading to extremely large mixed-integer programs. For MSPs with few stages

and a moderate number of scenarios, such SBAs can often be solved effectively using decom-

position techniques. However, these techniques typically rely on strong duality arguments

to ensure convergence, which fails for problems with integer recourse decisions or nonconvex

models. A few rigorous decomposition methods have recently been developed for mixed-

integer and nonconvex problems [48–50], but these are still nascent and have significant

limitations (e.g., computational cost is relatively high; they only apply to two-stage models;

the method in [48] requires purely integer first-stage decisions, etc.).
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On the other hand, tractable approximations of MSPs arising in the integrated

design and operation problems of interest here are often achieved through a variety of

strategies that relax operational detail. These include scenario aggregation [67, 68]; de-

coupling consecutive stages using static process models [64, 69]; using coarse time grids

[40, 64]; relaxing integrality of operational decisions [65, 66]; using linearized models [15,

37]; using deterministic or two-stage approximations [37, 65] that make operational deci-

sions with perfect foresight rather than under uncertainty; etc. While these simplifications

may be appropriate in some applications, they all degrade the original model in exactly the

aspects that are most essential for assessing the value of adaptability in dynamic and uncer-

tain environments. Thus, obscuring operational details through these simplifications may

lead to system designs that are highly sub-optimal or even infeasible under real operating

conditions.

A promising alternative to scenario-based approximation for MSPs with many stages

is to use a decision-rule approximation (DRA). In this approach, the space of feasible

recourse functions is restricted to a finitely parameterized family of decision rules (e.g., the

piecewise affine functions with n pieces), which explicitly specify (sub-optimal) operational

decisions for every realization of uncertainty. Decision rules (DRs) have huge potential

to address problems with very many stages because they reduce the original MSP to a

single-stage problem with dramatically fewer decisions, including only the original first-stage

decisions and a (potentially) small number of rule parameters. In fact, for state-space MSP

formulations of the type considered here, the number of decisions in the DRA can be made

independent of the number of stages by considering static DRs that act on the state rather

than the entire history of the uncertainty. Moreover, DRA formulations rigorously account

for the feasibility and cost of recourse actions in every realization of uncertainty, either

robustly or via expected costs and chance constraints. This can be a critical advantage over

scenario-based approximations, which only model recourse in a finite number of scenarios

that is often severely limited by computational considerations.

Decision rule approximation (DRA) has had tremendous success for linear prob-
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lems with continuous recourse. For example, the use of affine decision rules for robust and

chance-constrained instances of such problems results in DRAs that can be reformulated

as standard-form linear or conic programs [81, 82, 122]. Thus, instances with more than

fifty stages can be solved efficiently [82]. Various nonlinear decision rules have also been

proposed and shown to result in tractable DRA reformulations (e.g., piecewise affine, poly-

nomial, basis function expansions, etc.) [83–86]. In stark contrast, DRA has been much

less successful for problems with mixed-integer recourse. The fundamental issue is that

integer recourse decisions require discontinuous decision rules [90, 123]. The resulting DRA

is therefore a discontinuous optimization problem, which proves to be highly problematic

for devising efficient reformulations and solution procedures. The problem is made clear

by considering an approximation of the DRA using a finite set of scenarios. In such an

approximation, the action of the decision rules in each fixed scenario, and hence the cost

and constraints in each scenario, are discontinuous function of the DRA decision variables

(i.e., the original first-stage decisions plus the rule parameters). Reformulating this as a

continuous problem requires the addition of integer variables describing the action of the

decision rules in every scenario and every stage. This is clearly intractable for problems

with many stages and largely obviates the key advantages of DRA relative to SBA1.

For the class of MSPs considered in this chapter, no solution strategies using mixed-

integer DRs have yet been proposed in the open literature. However, a few DRA approaches

have been developed for linear multistage robust optimization problems with mixed-integer

recourse, and the key problem outlined above is evident in these approaches too. The paper

[90] proposes a highly flexible class of integer DRs based on the signs of piecewise affine

threshold functions. However, the resulting DRA is a discontinuous robust optimization

problem that is very difficult to solve. The article [123] proposes an alternative class of

DRs described by linear combinations of discontinuous basis functions. A critical feature of

this scheme is that the locations of the discontinuities are not decision-dependent (i.e., all

1Although not entirely, since non-anticipativity is enforced by the DR structure rather than through
constraints. As a consequence, the number of scenarios required to approximate DRA only depends on the
variance of the objective and constraints and can be very much smaller than the exponential scenario tree
required in standard SBA approaches.
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admissible rules are piecewise constant on a fixed polyhedral partition of the uncertainty

space), which is restrictive but provides significant computational advantages, particularly

for basis functions corresponding to box partitions. Instead of using basis functions, several

related approaches explicitly specify a partition of the uncertainty set and require the integer

recourse decisions to be constant on each partition element. Fixed partitions are used in

[124], while adaptive partitioning schemes are proposed for improved accuracy in [125,

126]. Despite their differences, all of these DR approaches ultimately require the solution

of mixed-integer problems or subproblems, and critically, the number of integer variables

again increases at least linearly (and often faster) with the number of stages2, as well as

something like the number of scenarios (i.e., worst-case candidate scenarios in [90], partition

elements in [124–126], and basis functions in [123]).

For the state-space MSP formulation considered in this chapter, a fundamentally

different approach is to cast the DRA as a simulation-optimization problem. This formu-

lation, which we refer to as DRA-SO, consists of an ‘outer’ optimization problem over only

the first-stage decisions (including DR parameters) and an ‘inner’ or ‘embedded’ stochastic

simulation that (approximately) evaluates the objective and constraints. Specifically, this

simulation uses the specified DR to make both continuous and discrete recourse decisions in

all stages and for all simulated scenarios. Compared to the approaches discussed above, the

critical advantage of DRA-SO is that it is scalable to problems with very many stages. In

particular, when it is acceptable to use the same decision rule in every stage (formulated as

a function of a state vector rather than the entire history of the uncertainty), the size of the

outer optimization problem is completely independent of the number of stages, while the

cost of the embedded simulation scales only linearly in the number of stages. Furthermore,

DRA-SO offers tremendous modeling flexibility because it can readily accommodate non-

linear and nonconvex MSPs as well as nearly arbitrary decision rules. Notably, this includes

2Notably, the approach in [123] is unique in that the integer variables are used to parameterize the DR
itself, rather than to represent its action in each stage and ‘scenario’. In the latter case, an increase in integer
variables with the number of stages is unavoidable regardless of the DR structure, while in [123] this growth
occurs because the DR is permitted to depend on the entire history of the uncertainty, and to be different
in each stage.
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even implicit DRs that make very high-quality recourse decisions by solving a parameterized

model predictive control (MPC) problem in each stage of the simulation. However, the obvi-

ous drawback of DRA-SO is that the outer optimization problem is highly complex despite

being low-dimensional, and the need for discontinuous DRs introduces unique challenges

in this context as well. In particular, such DRs make the simulated cost and constraint

values discontinuous with respect to the outer optimization variables for any fixed scenario.

For example, in integrated planning and scheduling problems, a perturbation of a design

decision may induce a change in a discrete operational decision through the embedded DR,

causing a discontinuity in the stage cost. Since this may occur in every stage and every

simulated scenario, the number of such discontinuities can be huge, making the outer opti-

mization problem extremely irregular and difficult to solve. Consequently, existing DRA-SO

approaches treat the embedded simulation as a black box and solve the outer optimization

problem using heuristic derivative-free algorithms [77, 78]. Unfortunately, these methods

are not guaranteed to find optimal solutions finitely and often suffer from slow convergence

compared to gradient-based algorithms [79, 80]. Thus, in practice, derivative-free meth-

ods often require prohibitive computational effort and may locate suboptimal solutions,

particularly in high-dimensional problems [78].

The key takeaway from the preceding discussion is as follows. On one hand, DRs

appear to have huge potential to address multistage problems with mixed-integer recourse

in many stages by effectively eliminating a vast number of integer decisions. On the other

hand, it is clear that this alone does not eliminate the overwhelming discrete character of

these problems, since all existing strategies for solving the resulting DRA ultimately deal

with auxiliary integer decisions or discontinuities that themselves scale at least linearly in

the number of stages. The central contribution of this chapter is to develop a class of

mixed-integer DRs that resolves this problem using the smoothing property of integration,

specifically for state-space MSP formulations with expected-value objectives and chance

constraints. The basic structure of the proposed DRs is very general, requiring only that

binary decisions are made by checking the signs of a set of smooth threshold functions
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that may depend arbitrarily on the system state, the current uncertainty vector, and the

first-stage decisions (including rule parameters). For any fixed state and uncertainty vec-

tor, these DRs are clearly discontinuous with respect to the first-stage decisions. However,

the key insight in our approach is that such discontinuities can be smoothed by integra-

tion over random variables. Thus, the use of such DRs can potentially result in expected

costs and chance constraints that are smooth functions of the decision variables. In this

chapter, DRs with this property are referred to as smooth-in-expectation decision rules.

This kind of smoothing is interesting because it mitigates the discrete character of the

original problem in a fundamentally new way. In the context of DRO-SO, it implies that

the embedded simulation returns stochastic estimates of smooth functions rather than dis-

continuous ones. Therefore, the outer optimization problem can be solved to first-order

optimality using stochastic gradient-based techniques, which may significantly outperform

heuristic approaches for high-dimensional problems. More fundamentally, smoothing actu-

ally endows the outer optimization problem with a meaningful concept of local optimality,

thereby providing a potentially efficient means to locate high-quality solutions.

To formalize these ideas, the first concrete contribution of this chapter is a set of

sufficient conditions under which the general class of DRs described above is guaranteed to

result in continuously differentiable expected costs and chance constraints. These condi-

tions are based on our prior results in Chapter 2 concerning the differentiability of expected

costs associated with stochastic hybrid systems. In addition to adapting these conditions

to state-space MSPs, we also provide important extensions to accommodate chance con-

straints and models with discrete state variables, neither of which is addressed in Chapter

2. The extension to discrete states is important because such states are often needed to

enforce timing constraints such as minimum uptime/downtime constraints in unit com-

mitment and scheduling problems. Although the resulting differentiability conditions are

relatively mild, they are violated in some important cases. However, a key observation is

that these conditions can always be satisfied by using a suitably randomized DR, and we

provide a systematic method for achieving this by introducing a minimal number of ad-
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ditional random variables. Unfortunately, this randomization is undesirable in some cases

because it can lead to violations of important operational constraints with a non-trivial

probability. To address this, the second major contribution of this chapter is a second

set of sufficient conditions that relaxes several problematic requirements in the first. This

second set of conditions is much more likely to be satisfied in practice and is often easier

to verify. Moreover, these conditions can always be satisfied by randomization, and this

potentially requires many fewer additional random variables than the first set. Finally, we

demonstrate the use of these results to solve an illustrative integrated design and operation

problem with integer recourse decisions in 365 stages. Using the proposed class of mixed-

integer DRs together with the developed differentiability conditions, we obtain a smooth

DRA-SO formulation and demonstrate the advantages of differentiability by comparing the

optimization performance of a basic stochastic trust-region algorithm [127] (which relies on

differentiability) to that of a commercial gradient-free algorithm.

3.3 Problem Formulation

3.3.1 Notation

Scalars, vectors, and matrices are denoted without emphasis, bold font is used for

sequences x = (x0, . . . , xN ), and xi:j denotes the subsequence (xi, . . . ,xj). For S ⊂ Rns , the

set of k-times continuously differentiable maps from S into Rm is denoted by Ck(S,Rm),

and the set of all essentially bounded measurable maps from S into Rm is denoted by

L∞(S,Rm). For (ŝ, r̂) ∈ S ×R with R ⊂ Rnr , the Jacobian matrix of `(ŝ, ·) at r̂ is denoted

by ∂`
∂r (ŝ, r̂) or ∇T

r `(ŝ, r̂).

3.3.2 General Model for State-Space Multistage Stochastic Programs

We consider a general state-space multistage stochastic program (MSP) with K

stages, affected by a sequence ω = (w0, . . . , wK) of random variables wk ∈ W̃ ⊂ Rnw

revealed at each stage k ∈ K ≡ {0, . . . ,K}.

66



Assumption 3.3.1. The random sequence ω has a probability density p : Ω̃→ R defined on

the open set Ω̃ ≡ W̃×· · ·×W̃ . Moreover, there exists a compact interval W ≡ [wL, wU ] ⊂ W̃

such that p is zero outside of Ω ≡W × · · · ×W and continuous on the interior of Ω.

The first-stage decisions of the MSP are denoted by θ ∈ Θ̃ ⊂ Rnθ and the mixed-

integer recourse decisions are denoted by uk(ω) = (uck(ω), udk(ω)) with uck(ω) ∈ Ũ c ⊂ Rncu

and udk(ω) ∈ Ũd ⊂ {0, 1}ndu . The systems of interest are characterized by a state xk(ω) which

follows given nonlinear dynamics with a fixed initial state x0(ω) = b0. We allow xk(ω) to

contain both continuous and discrete states, which we denote by xk(ω) = (xck(ω), zdk(ω))

with xck(ω) ∈ X̃c ⊂ Rncx and zdk(ω) ∈ X̃d ⊂ Zndx . Define the sets X̃ ≡ X̃c × X̃d

and Ũ ≡ Ũ c × Ũd and the functions C : Θ̃ → R, f : K × Ũ × X̃ × W̃ × Θ̃ → X̃,

`S : K × Ũ × X̃ × W̃ × Θ̃→ R, and g : K × Ũ × X̃ × W̃ × Θ̃→ Rng .

Assumption 3.3.2. The sets Ũ c, X̃c, W̃ , and Θ̃ are open. Moreover, for each k ∈ K,

ud ∈ Ũd, and zd ∈ X̃d, the functions C(·), f(k, (·, ud), (·, zd), ·, ·), `S(k, (·, ud), (·, zd), ·, ·),

and g(k, (·, ud), (·, zd), ·, ·) are continuously differentiable on Ũ c × X̃c × W̃ × Θ̃.

We consider the following state-space MSP model, where Θ is a compact subset of

Θ̃ and E[A] and P[A] denote the expected value and probability of A, respectively:

min
θ∈Θ

xk∈L∞(Ω,X̃)

uk∈L∞(Ω,Ũ)

C(θ) + E
[
K∑
k=0

`S(k, uk(ω), xk(ω), wk, θ)

]

s.t. P [g(k, uk(ω), xk(ω), wk, θ) ≤ 0] ≥ 1− ε

x0(ω) = b0, ∀ω ∈ Ω

xk+1(ω) = f(k, uk(ω), xk(ω), wk, θ), ∀ω ∈ Ω

uk nonanticipative

∀k ∈ {0, . . . ,K}

(3.1)

The constraint P [g(k, uk(ω), xk(ω), wk, θ) ≤ 0] ≥ 1 − ε is a general joint chance

constraint specifying that g(k, uk(ω), xk(ω), wk, θ) ≤ 0 must hold with probability 1 − ε,

where ε ∈ (0, 1]. Note that the case of ε = 0, which corresponds to robust constraints,
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is not addressed by our solution method. However, cases when some of the constraints

gi(k, uk(ω), xk(ω), wk, θ) ≤ 0 are required to hold robustly are discussed in §3.4.2. The

nonanticipativity of uk means that uk must be decided at time k using only knowledge of

wj with j ≤ k, and is required to model realistic operation of the system. This can be

explicitly stated by the constraint uk(ω) = uk(ω̂), for all ω, ω̂ ∈ Ω with w0:k−1 = w̃0:k−1.

Overall, the MSP (3.1) chooses the first stage decisions θ that simultaneously minimize the

first-stage cost C and the expected value of the sum of the stage costs `S assuming optimal

operations in each stage k ∈ K.

3.3.3 Decision-Rule Approximation

The MSP (3.1) is intractable because, first, the sets of functions L∞(Ω, X̃) and

L∞(Ω, Ũ) are infinite dimensional, and second, the expected value E and probability P

cannot be computed exactly except in very special cases. To address the first issue,

a promising approach is to approximate the recourse decisions uk with a decision rule

κ : K × X̃ × W̃ × Θ̃→ Ũ as follows:

uk(ω) = κ(k, xk(ω), wk, θ). (3.2)

The decision rule (DR) κ has a fixed structure, but can depend on parameters γ ∈ Γ ⊂ Rnγ

that can be co-optimized with the first-stage decisions θ. For simplicity of notation, we use

θ henceforth to refer to the vector containing both the original first-stage decisions and the

rule parameters γ. The advantage of using κ is that it eliminates the need to optimize over

the infinite dimensional spaces L∞(Ω, Ũ) and L∞(Ω, X̃) because, for each (ω, θ) ∈ Ω̃× Θ̃, κ

fixes the value of uk(ω) and ensures that the value of xk(ω) is uniquely determined by the

dynamic model f . Moreover, κ directly enforces nonanticipativity of uk, which eliminates

the infinite number of nonanticipativity constraints in (3.1).

With a slight abuse of notation (recall that xk and uk are already defined as functions
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of ω only), define xk(ω, θ) and uk(ω, θ) for every (ω, θ) ∈ Ω̃× Θ̃ by the recursion:

x0(ω, θ) ≡ b0, (3.3)

uk(ω, θ) ≡ κ(k, xk(ω, θ), wk, θ), (3.4)

xk+1(ω, θ) ≡ f(k, uk(ω, θ), xk(ω, θ), wk, θ). (3.5)

Moreover, define `(ω, θ) and τk(ω, θ) for each (ω, θ) ∈ Ω̃× Θ̃ by:

`(ω, θ) ≡
K∑
k=0

`S(k, uk(ω, θ), xk(ω, θ), wk, θ), (3.6)

τk(ω, θ) ≡ g(k, uk(ω, θ), xk(ω, θ), wk, θ). (3.7)

Then, the decision-rule approximation (DRA) for (3.1) is given by:

min
θ∈Θ

C(θ) + E [`(ω, θ)]

s.t. P [τk(ω, θ) ≤ 0] ≥ 1− ε, ∀k ∈ {0, . . . ,K}.
(3.8)

Problem (3.8) is a single-stage problem with a finite and potentially small number

of decisions θ. This is a huge simplification of (3.1), particularly for problems where it is

necessary to model short-time scale operations over a long horizon, leading to many stages

in (3.1). Nevertheless, (3.8) is still intractable because E [`(ω, θ)] and P [τk(ω, θ) ≤ 0] are

not be finitely computable in general.

In very special cases, the approximation (3.8) can be reformulated as an equivalent

deterministic problem. For example, when (3.1) is linear and the recourse decisions uk(ω)

are purely continuous, a suitable DR (e.g., linear) can allow E [`(ω, θ)] and P [τk(ω, θ) ≤ 0]

to be written explicitly in terms of θ. However, for the general case we consider here,

a deterministic equivalent for (3.8) is very difficult to obtain because ` and τk may be

nonlinear and are often highly discontinuous. The discontinuity of ` and τk arise because

the definition of these functions involves κ, and κ must be discontinuous in order to model
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discrete recourse decisions. Prohibitively, the number of such discontinuities can be very

large because they can be introduced at every stage and for each ω ∈ Ω̃, making E [`(ω, θ)]

and P [τk(ω, θ) ≤ 0] extremely hard to write explicitly.

A more general approach is to evaluate E [`(ω, θ)] and P [τk(ω, θ) ≤ 0] through

stochastic simulations. For a given θ, this consists of simulating the recursion (3.3)–(3.5)

for randomly generated sequences ω to obtain `(ω, θ) and τk(ω, θ), which are then used to

estimate E [`(ω, θ)] and P [τk(ω, θ) ≤ 0]. To emphasize this simulation approach, we define

the following notation:

L(θ) ≡ E [`(ω, θ)] , (3.9)

Pk(θ) ≡ P [τk(ω, θ) ≤ 0] . (3.10)

Using this approach, it becomes natural to cast the approximation (3.8) as a simulation-

optimization problem. This formulation, which we refer to as DRA-SO, consists of an ‘outer’

optimization problem over only θ and an ‘inner’ or ‘embedded’ stochastic simulation that

evaluates L(θ) and Pk(θ). Thus, the DRA-SO problem can be written as follows:

min
θ∈Θ

C(θ) + L(θ)

s.t. Pk(θ) ≥ 1− ε, ∀k ∈ {0, . . . ,K}.
(3.11)

It is not immediately clear that merely casting (3.8) as (3.11) resolves any of the key

issues discussed above. Specifically, if ` and τk are discontinuous, then `(ω, ·) and τk(ω, ·)

may be discontinuous with respect to θ for each fixed ω. It follows that sample average

approximations such as L(θ) ≈ M−1
∑M

j=1 `(ωj , θ) will also be discontinuous with respect

to θ, and therefore it seems very likely that L and Pk will also be discontinuous, making

(3.11) difficult to solve. To the contrary, our primary interest in (3.11) is that the true

expected value L and probability Pk can be smooth functions of θ even when sample average

approximations are highly discontinuous, as shown by the following simple example.

Example 1. Consider a one-stage (i.e., K = 0) instance of (3.1) with w0 uni-
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formly distributed in [0, 1], θ ∈ [0.1, 0.8], u0(w0) ∈ {0, 1}, C(θ) = 2(θ − 0.7)2,

`S(0, u0(w0), x0(w0), w0, θ) = u0(w0), and no chance constraints. Consider the DRA-SO

approximation (3.11) for this instance with u0(w0, θ) = κ(0, x0(w0, θ), w0, θ) = 0 if θ ≤ w0

and u0(w0, θ) = κ(0, x0(w0, θ), w0, θ) = 1 otherwise. By (3.6), this implies that `(w0, θ) = 0

if θ ≤ w0 and `(w0, θ) = 1 otherwise. Thus, for any fixed sample w0, `(w0, ·) has one dis-

continuity at θ = w0, where it jumps from 0 to 1. In Fig. 3.1, the plot on the left shows an

approximation of C +L, where, for all θ, L(θ) = E [`(w0, θ)] is approximated by an average

of `(w0, θ) over 7 fixed samples (i.e., the same samples are used for every θ). Clearly, this

function is discontinuous, and the number of discontinuities increases proportionally with

the sample size. On the other hand, the plot on right shows C + L with L(θ) computed
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Figure 3.1: C(θ) + L(θ) vs. θ for Example 1 using a binary DR. Left : L(θ) computed by
sample average approximation with 7 samples. Right : L(θ) computed exactly.

exactly as E [`(w0, θ)] = θ. The key observation is that, even though `(w0, ·) and the sam-

ple average approximation of L are discontinuous, the true expected value function L is

smooth.

The key result of the preceding example is that the true expected value L can be

smooth even when ` is discontinuous, and hence even when sample average approximations

are discontinuous for any finite number of samples. Although we used an explicit expression

for L to show this, it is not necessary to have such an expression in order to exploit this

observation. Specifically, even when L can only be approximated by stochastic simulations,

it is possible to obtain stochastic estimates of∇L (e.g., by simple finite differencing) that are

appropriate for use in stochastic gradient decent algorithms with probabilistic convergence
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to local minima for smooth problems [128, 129]. In contrast, if one replaces L with a

discontinuous sample average approximation based on some fixed set of samples chosen a

priori, then any estimate of ∇L, such as a finite difference estimate, would be meaningless,

and any descent algorithm based on it would likely fail. Thus, the knowledge that L and Pk

are smooth, at least for some instances of (3.11), can potentially enable the use of efficient

gradient-based techniques for solving (3.11) to local optimality, which is likely to have

significant advantages over derivative-free approaches, especially when θ is high-dimensional.

More subtly, it can be seen from Fig. 3.1 that the smoothness of L actually endows (3.11)

with a meaningful notion of local optimality that is absent in the discontinuous sample-

average approximation (i.e., the discontinuities in the latter generate a profusion of highly

suboptimal local minima). Moreover, even a global solution of the latter can be arbitrarily

far from the solution of the smooth problem. Therefore, the use of decision rules that

ensure smoothness of L and Pk, whenever it is practical to do so, may prove to be a

powerful strategy for efficiently locating high-quality solutions of MSPs with mixed-integer

recourse.

3.3.4 Objectives of the Chapter

The objectives of this chapter are to introduce a general class of mixed-integer

decision rules, to establish a set of sufficient conditions under which such a rule is guaranteed

to produce a DRA-SO approximation (3.11) with continuously differentiable objective L and

constraint functions Pk, and to demonstrate that these conditions are practically useful.

This is motivated by the hope that such a smoothness property will enable (3.11) to be

solved efficiently using stochastic gradient descent methods, thereby providing a practical

means to obtain high-quality solutions of otherwise intractable instances of the MSP (3.1).

Although we demonstrate such an approach for one illustrative example, the development

of a generally effective gradient descent algorithm for this class of problems is beyond the

scope of this chapter. Moreover, in contrast to existing work on mixed-integer decision

rules, the goal of this chapter is to provide a reformulation of (3.1) that is amenable to

72



efficient local optimization. Thus, we neither claim nor attempt to arrange that (3.11) is

convex or otherwise amenable to efficient global optimization.

3.4 Smooth-in-Expectation Decision Rules

In this section, we introduce a general class of mixed-integer decision rules and

develop a first set of conditions under which such rules are guaranteed to give a smooth

expected value function L.

Definition 3.4.1. Let S ≡ {−1, 1}nσ , let κσ : K × X̃ × W̃ × Θ̃ → Ũ be a collection of

rules indexed by σ ∈ S, and let hi : K × S × X̃ × W̃ × Θ̃ → R be a collection of event

functions indexed by i ∈ {1, . . . , nσ}. Assume that, for every k ∈ K, zd ∈ X̃d, and σ ∈ S,

each κσ(k, (·, zd), ·, ·) and hi(k, σ, (·, zd), ·, ·) is continuously differentiable on X̃c × W̃ × Θ̃.

Moreover, assume that each hi is independent of all σj with j ≥ i and, with a slight abuse

of notation, denote hi(k, σ1:i−1, z, w, θ) = hi(k, σ, z, w, θ). The class of DRs we consider is

defined for each (k, z, w, θ) ∈ K × X̃ × W̃ × Θ̃ by

σi =

 1 if hi(k, σ1:i−1, z, w, θ) ≤ 0

−1 otherwise

 , ∀i ∈ {1, . . . , nσ} (3.12)

κ(k, z, w, θ) = κσ(k, z, w, θ). (3.13)

In words, a DR satisfying Definition 3.4.1 makes decisions by first checking the sign

of a sequence of event functions hi to determine the binary vector σ, and then implementing

a predetermined smooth decision rule κσ based on the value of σ. Note that each event

function hi can depend on the outcome σj of all previous event functions hj with j < i.

Thus, σ is determined by a binary decision tree. Moreover, the event functions hi and

rules κσ can depend arbitrarily on the current state, uncertainty, and first-stage decisions,

provided that this dependence is smooth. In practice, these functions must be specified

by the user, but they can be parameterized for flexibility by augmenting the first-stage
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decisions θ with the necessary rule parameters. In this way, the behavior of the rule will be

co-optimized with the original first-stage decisions when solving (3.11). Note that each κσ

makes both continuous and binary recourse decisions; i.e., (uc, ud) = κσ(k, z, w, θ). Since

κσ(k, (·, zd), ·, ·) is assumed to be continuously differentiable on X̃c×W̃×Θ̃ for every k ∈ K,

zd ∈ X̃d, and σ ∈ S, its binary output must be constant for each (k, zd, σ). Thus, each

tuple (k, xd, σ) yields a single binary outcome ud. However, σ and ud are not the same, and

σ may be used to encode other non-smooth behaviors, such as piecewise affine policies for

the continuous recourse decisions.

Definition 3.4.1 provides a general framework for modeling many decision rules found

in the literature. These include exact recourse rules available from multiparametric pro-

gramming [10], linear and nonlinear decision rules found in the robust optimization litera-

ture [81–86], and logic controllers such as energy management policies in microgrid systems,

hedging rules in water resource management, and dispatching rules in flexible manufacturing

[16, 74, 75]. The structure (3.12)–(3.13) is also closely related to the idea of uncertainty-set

partitioning used in the robust optimization literature [124–126] in which a decision-rule

is assigned to each partition element. In our case, once θ is fixed, the event functions hi

in (3.12) define a partition of the joint state and uncertainty set and a decision-rule κσ is

used on each partition element. Notably, the structure of this partition can change with

θ. Thus, the class of DRs satisfying Definition 3.4.1 is more flexible than classes based on

fixed partitions (e.g., [123, 124]).

Definition 3.4.2. Let κ : K×X̃×W̃ × Θ̃→ Ũ be a decision rule satisfying Definition 3.4.1

and define L : Θ̃→ R by (3.9) with (3.3)–(3.6). The rule κ is called smooth-in-expectation

if L ∈ C1(Θ̃,R).

Remark 3.4.1. Although differentiability of L seems like a property of both κ and the

problem data (e.g., `, f , etc.), the results in the next subsection show that it only depends

on κ provided that Assumptions 3.3.1–3.3.2 hold. Thus, smoothness-in-expectation is truly

a property of the decision rule, as the wording of Definition 3.2 suggests.

74



3.4.1 A First Set of Sufficient Conditions for Smoothness-in-Expectation

Let κ be a mixed-integer decision rule satisfying Definition 3.4.1. In this subsec-

tion, we establish a first set of conditions on κ that are sufficient to guarantee continuous

differentiability of the expected-value L.

To ease notation, we first define the sets M(k, σ, θ), which partition the joint state

and uncertainty set X̃×W at each k. For each fixed k ∈ K and θ ∈ Θ, these sets contain all

(z, w) ∈ X̃ ×W consistent with a fixed discrete mode σ ∈ S according to (3.12). Note that

we use the compact notation σihi ≤ 0 to state that hi ≤ 0 if σi = 1 and hi ≥ 0 if σi = −1.

Definition 3.4.3. For every k ∈ K, σ ∈ S, and θ ∈ Θ̃, define the sets

M(k, σ, θ) ≡ {(z, w) ∈ X̃ ×W : σihi(k, σ, z, w, θ) ≤ 0, ∀i}, (3.14)

∂iM(k, σ, θ) ≡ {(z, w) ∈M(k, σ, θ) : hi(k, σ, z, w, θ) = 0}, (3.15)

∂ijM(k, σ, θ) ≡

(z, w) ∈M(k, σ, θ) :
hi(k, σ, z, w, θ) = 0

hj(k, σ, z, w, θ) = 0

 . (3.16)

The sufficient conditions for smoothness-in-expectation are stated below, followed

by our main result (Theorem 3.4.1). A conceptual discussion of these conditions follows

Theorem 3.4.1.

Condition 3.4.1. For any k ∈ K, σ ∈ S, θ ∈ Θ̃, and i ∈ {1, . . . , nσ},

∂hi
∂w

(k, σ, z, w, θ) 6= 0, ∀(z, w) ∈ ∂iM(k, σ, θ).

Condition 3.4.2. Choose any k ∈ K, σ ∈ S, θ ∈ Θ̃, and i, j ∈ {1, . . . , nσ} with i 6= j.

Then, the following condition holds:

rank

 ∂hi
∂w (k, σ, z, w, θ)

∂hj
∂w (k, σ, z, w, θ)

 = 2, ∀(z, w) ∈ ∂ijM(k, σ, θ).
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Condition 3.4.3. Choose any k ∈ K, σ ∈ S, θ ∈ Θ̃, i ∈ {1, . . . , nσ}, and p ∈ {1, . . . , nw}

and let ep denote the unit vector with the 1 in the pth position. Then, the following condition

holds:

rank

∂hi∂w (k, σ, z, w, θ)

eT
p

 = 2, ∀(z, w) ∈ ∂iM(k, σ, θ) with wp = wLp or wp = wUp .

Theorem 3.4.1. Under Condition 3.4.1, L is continuous on Θ̃. If Conditions 3.4.2–3.4.3

also hold, then L ∈ C1(Θ̃,R).

Theorem 3.4.1 is proven in the appendix of this dissertation by extending the main

result in Chapter 2, which concerns the differentiability of expected-value costs associated

with stochastic hybrid systems. The key idea is to apply this result to the dynamic system

(3.3)–(3.6) with Definition 3.4.1. However, since this system is structurally different from

that in Chapter 2, applying the result in Chapter 2 requires addressing several technical

details. For brevity the proof is given in the appendix.

To conceptually understand Conditions 3.4.1–3.4.3, consider the following simple

instance of (3.1) with K = 0, one-dimensional θ, w uniformly distributed in an interval

W ⊂ R2, and purely binary recourse decisions u0(w) ∈ Ũ = {0, 1}2:

min
θ∈Θ

u0∈L∞(W,Ũ)

E [u0,1(w0) + 2u0,2(w0)] (3.17)

To form a DRA-SO approximation (3.11) of this instance, consider a decision

rule κ satisfying Definition 3.4.1 with two event functions h1 and h2 determining

σ ∈ S = {(1, 1), (1,−1), (−1, 1), (−1,−1)}, and with κσ(w, θ) = 0.5 + 0.5σ ∈ {0, 1}2.

According to (3.9), we have L(θ) = E[κ1(w0, θ) + 2κ2(w0, θ)]. This situation is illustrated

in Fig. 3.2, where the box represents the set W and the solid lines labeled hi(w, θ) = 0

are the subsets of W where hi is active for the particular θ considered. For each fixed θ,

the hi’s partition the set W into regions M(σ, θ) with σ ∈ S. Let P(σ, θ) = P[M(σ, θ)]

denote the probability of observing w ∈ M(σ, θ). This probability can be interpreted as

76



Figure 3.2: Illustration of situations that satisfy and violate Condition 3.4.1–3.4.3

the normalized area of the region M(σ, θ). Then, L(θ) can be rewritten as

L(θ) =
∑
σ∈S

(κσ,1(w0, θ) + 2κσ,2(w0, θ))P(σ, θ)

=
∑
σ∈S

(1.5 + 0.5σ1 + σ2)P(σ, θ).
(3.18)

Thus, differentiability of L depends on that of P(σ, ·) for each σ ∈ S. Specifically,

L ∈ C1(Θ̃,R) if and only if the probabilities P(σ, θ) change smoothly upon perturbing

θ. The effects of Conditions 3.4.1–3.4.3 on the smoothness of these probability changes is

illustrated in Fig. 3.2. The top-left plot illustrates the case where Conditions 3.4.1–3.4.3 are

satisfied, while the remaining three plots illustrate cases where each condition is violated.

We discuss the violations first.

Condition 3.4.1 states that each hi must have nontrivial dependence on w at all

points where it is active (i.e., hi(w, θ) = 0). The top-right plot in Fig. 3.2 illustrates

a case where Condition 3.4.1 is violated because h2 is completely independent of w and
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h2(w, θ) = h2(θ) = 0 on the whole shaded area (i.e., the entire set W ) for the specific value

of θ shown in the figure. In this case σ2 = 1 and there are only two possible values for σ

determined by the sign of h1(w), namely σ = (1, 1) and σ = (−1, 1). Correspondingly, there

are two regions M((1, 1), θ) and M((−1, 1), θ) and only two nonzero terms in (3.18). This

situation can cause a discontinuity in L because a perturbation δ ∈ R such that h2(θ+δ) > 0

will cause a switch from σ2 = 1 to σ2 = −1, shifting all of the probability discontinuously

to the regions corresponding to σ = (1,−1) and σ = (−1,−1).

Condition 3.4.2 states that any two event functions must have linearly independent

w-gradients at all points w where both of them are active. This requirement is clearly

violated in the bottom-left plot in Fig. 3.2. In this case, the probabilities in (3.18) will

change continuously with perturbations of θ by δ, but they may change non-smoothly. For

example, suppose δ > 0 causes h2 to be translated to the right while δ < 0 causes h2 to

translate left with h1 fixed in both cases. Then, the regionM((−1, 1), θ+ δ) will appear for

δ > 0 perturbations, but not for δ < 0 perturbations. Critically, the degeneracy of h1(·, θ)

and h2(·, θ) implies that the probability P((−1, 1), θ + δ) will increase linearly w.r.t. δ > 0

perturbations. Thus, P((−1, 1), θ + δ) is constant for δ < 0 and linear for δ > 0, which

makes P((−1, 1), ·) nonsmooth at θ.

Condition 3.4.3 states that event functions must be non-degenerate with the bound-

aries of the interval W in the same sense that Condition 3.4.2 requires them to be non-

degenerate with each other. The bottom-right plot in Fig. 3.2 illustrates a violation of this

condition where h2(·, θ) is degenerate with the north boundary of W . As in the previous

case, suppose that a perturbation δ > 0 causes h2 to be translated upward while a per-

turbation δ < 0 causes h2 to translate downward with h1 fixed in both cases. Then, the

degeneracy between h2(·, θ) = 0 and the north boundary of W implies that the probability

of, e.g., M((1, 1), θ + δ) will increase linearly w.r.t δ as δ < 0 increases while it will remain

constant for δ > 0 perturbations. Thus, P((1, 1), ·) will be nonsmooth at θ.

Finally, the top-left plot illustrates a case where Conditions 3.4.2–3.4.3 are all satis-

fied. In this case, Theorem 3.4.1 ensures that the probabilities of all of the regionsM(σ, θ+δ)
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will change smoothly with perturbations δ, therefore leading to smoothness of L via (3.18).

A key consequence of Conditions 3.4.1–3.4.3 is that smoothness-in-expectation is

only a property of the decision rule κ. This is important because it implies that any instance

of (3.1) can potentially be made efficiently solvable via (3.11) by deliberately constructing

DRs that are smooth-in-expectation. However, for (3.11) to be a useful approximation of

(3.1), Conditions 3.4.1–3.4.3 have to allow DRs that are reasonably accurate. Fortunately,

there are many applications where commonly used DRs naturally satisfy Conditions 3.4.1–

3.4.3. For example, in power systems and manufacturing, one common approach is to make

discrete unit commitment decisions based on a random realization of uncertain quantities

affecting the operation of the system, such as product demands, power loads, renewable re-

sources, etc. [16, 74, 75]. This results in threshold functions of the form hi = wk−bi(k, xk, θ),

which clearly satisfy Condition 3.4.1 and often satisfy Conditions 3.4.2–3.4.3 (although this

is more difficult to show with simple examples because these conditions involve the whole

set of hi’s).

However, Conditions 3.4.1–3.4.3 rule out many other practically useful DRs. Exam-

ples include DRs that make discrete decisions based on thresholds on system states, such

as product inventory levels, battery state of charge, or counter states required to enforce

minimum up/down time constraints [20, 130]. This results in threshold functions of the

form hi = xk − bi(k, θ), which clearly violate Condition 3.4.1. Thus, Conditions 3.4.1–3.4.3

have some serious limitations. However, in the next section we show that any DR can be

made to satisfy Conditions 3.4.1–3.4.3 by simply randomizing the event functions hi, and

we discuss cases where it is and is not desirable to perform such a randomization.

3.4.2 Satisfying Conditions 3.4.1–3.4.3 using Randomized Decision Rules

Let κ be any decision rule satisfying Definition 3.4.1 but violating one or more of

Conditions 3.4.1–3.4.3. This subsection shows that there is always a simple modification of κ

that is guaranteed to satisfy Conditions 3.4.1–3.4.3, and is therefore smooth-in-expectation.

This modification consists of randomizing κ by adding new random variables to the event
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functions hi as detailed in the following definition. This randomization does not affect the

functions κσ.

Definition 3.4.4. Let κ be a decision rule satisfying Definition 3.4.1. For each

i ∈ {1, . . . , nσ}, let ξ1,i and ξ2,i be random variables with a probability density ρ : Ξ̃ → R,

where Ξ̃ is open, ρ is zero outside of a compact interval Ξ = [ξL, ξU ] ⊂ Ξ̃, and ρ is con-

tinuous on the interior of Ξ. Let W̆ ≡ W × Ξ × · · · × Ξ,
˜̆
W ≡ W̃ × Ξ̃ × · · · × Ξ̃, and

define κ̆σ : K × X̃ × ˜̆
W × Θ̃ → Ũ and h̆i : K × S × X̃ × ˜̆

W × Θ̃ → R as follows, where

w̆ = (w, ξ1, ξ2) = (w, ξ1,1, . . . , ξ1,nσ , ξ2,1, . . . , ξ2,nσ) :

h̆i(k, σ, z, w̆, θ) = hi(k, σ, z, w, θ) + ξ1,i + ξ2,i, (3.19)

κ̆σ(k, z, w̆, θ) = κσ(k, z, w, θ). (3.20)

Moreover, for every σ ∈ S, define κ̆ : K × X̃ × ˜̆
W × Θ̃→ Ũ by

σi =

 1 if h̆i(k, σ, z, w̆, θ) ≤ 0

−1 otherwise

 , ∀i ∈ {1, . . . , nσ}, (3.21)

κ̆(k, z, w̆, θ) = κ̆σ(k, z, w̆, θ). (3.22)

Corollary 3.4.1. Let κ be any decision rule satisfying Definition 3.4.1. If κ̆ is constructed

from κ as in Definition 3.4.4, then κ̆ satisfies Conditions 3.4.1–3.4.3 and is therefore

smooth-in-expectation.

Proof It suffices to show that Conditions 3.4.1–3.4.3 are satisfied with h̆i in place

of hi. Let êT
i be a unit vector of length nσ with the 1 in the ith position and let eT

p be

a unit vector of length nw + 2nσ with the 1 in the pth position. In the arguments below,

we use the notation M̆(k, σ, θ) to denote M(k, σ, θ) as defined in Definition 3.4.3 with the

modified event functions h̆i. Accordingly, M̆(k, σ, θ) contains (z, w̆) in the same way that
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M(k, σ, θ) contains (z, w). Moreover, note that

[
∂h̆i
∂w̆

]
=

[
∂h̆i
∂w

∂h̆i
∂ξ1

∂h̆i
∂ξ2

]
. (3.23)

To show Condition 3.4.1, choose any k ∈ K, σ ∈ S, θ ∈ Θ̃, i ∈ {1, . . . , nσ}, and

(z, w̆) ∈ ∂iM̆(k, σ, θ). Applying (3.23) to (3.19), we have

∂h̆i
∂w̆ (k, σ, z, w̆, θ) =

[
∂hi
∂w (k, σ, z, w, θ) êT

i êT
i

]
6= 0. (3.24)

To show Condition 3.4.2, choose any k ∈ K, σ ∈ S, θ ∈ Θ̃, i, j ∈ {1, . . . , nσ} with

i 6= j, and (z, w̆) ∈ ∂ijM̆(k, σ, θ). Applying (3.23) to (3.19), we have

rank

 ∂h̆i∂w̆ (k, σ, z, w̆, θ)

∂h̆j
∂w̆ (k, σ, z, w̆, θ)

 = rank

 ∂hi∂w (k, σ, z, w, θ) êT
i êT

i

∂hj
∂w (k, σ, z, w, θ) êT

j êT
j

 = 2. (3.25)

Lastly, to show Condition 3.4.3, choose any k ∈ K, σ ∈ S, θ ∈ Θ̃, i ∈ {1, . . . , nσ},

p ∈ {1, . . . , nw + 2nσ}, and (z, w̆) ∈ ∂iM̆(k, σ, θ) with w̆p = w̆Lp or w̆p = w̆Up . Applying

(3.23) to (3.19), we have

rank

∂h̆i∂w̆ (k, σ, z, w̆, θ)

eT
p

 = rank

∂hi∂w (k, σ, z, w, θ) êT
i êT

i

eT
p

 = 2. (3.26)

Remark 3.4.2. In practice, it is often only necessary to randomize a small subset of the

event functions in order to satisfy Conditions 3.4.1–3.4.3 (see the example given in Section

6). However, in Definition 3.4.4, randomization is applied to all event functions hi to

simplify notation.

Corollary 3.4.1 implies that any potentially non-smooth decision rule approxima-

tion can be made smooth by simply randomizing the rule according to Definition 3.4.4.
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Importantly, this randomization does not change anything about the problem itself (i.e.,

the data f , `S , g, etc. defining the original MSP). Moreover, it does not need to change the

decision rule very significantly either since there is no theoretical requirement on the size of

the perturbations ξ1,i and ξ2,i used in Definition 3.4.4. Since the original rule κ only needs

to satisfy Definition 3.4.1, which is very flexible, this result provides significant support

for the claim that many MSPs of interest will admit decision rules that are simultaneously

accurate (i.e., provide a good approximation of the true optimal recourse function) and

smooth-in-expectation. Thus, the proposed use of gradient-based algorithms to efficiently

solve smooth decision rule approximations should be broadly applicable.

However, achieving smoothness by randomization can be problematic when one

is interested in satisfying some or all of the problem constraints robustly rather than in

probability. Although robust constraints are strictly not allowed in the problem formulation

(3.1), it is often both possible and desirable to design a decision rule that satisfies some or

all of the constraints robustly (see the example in Section 6). Unfortunately, in these cases

the randomization method in Definition 3.4.4 may cause a constraint that was satisfied

robustly to be violated with some nonzero probability. This is particularly undesirable

when the constraint models some aspect of the problem physics. For example, consider

a constraint gj = xdk − xdmax ≤ 0 requiring that the number of time periods that some

process has run (xdk) never exceeds a maximum value (xdmax). In this case, a DR satisfying

Definition 3.4.1 can be constructed such that the discrete decision to run or shut down the

process is made using the threshold function hi = xdk − xdmax − 1. Such a DR will enforce

gj ≤ 0 robustly. However, this hi violates Condition 3.4.1 and, unfortunately, randomizing

it will lead to violation of the robust constraint gj ≤ 0 with non-zero probability (e.g., the

process may run for longer than the allowed xdmax periods). Similar issues arise commonly

with other constraints that are desirable to enforce robustly with the DR (e.g., exceeding a

specified level of inventory, overcharging/discharging battery banks, etc.).

Fortunately, these limitations are not fundamental to the use of smooth-in-

expectation decision rules. Rather, they reflect the fact that Conditions 3.4.1–3.4.3 are
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stronger than necessary. In the next section, we present a second, less restrictive set of suf-

ficient conditions for smoothness-in-expectation that permits the use of some problematic

event functions of the type discussed above without randomization. As a result, smoothness-

in-expectation can be achieved in general with fewer additional random variables, and hope-

fully with none appearing where they might cause undesirable constraint violations with

nonzero probability.

3.5 Relaxed Sufficient Conditions for Smoothness-in-

Expectation

Let κ be a decision rule satisfying Definition 3.4.1. This section presents a new set

of sufficient conditions for smoothness-in-expectation of κ that allow the derivative-based

conditions in Conditions 3.4.1–3.4.3 to be violated in some important practical situations.

Specifically, we show that they are only required to hold for the functions hi(k, σ, (·, zd), ·, ·)

corresponding to some choice of discrete quantities (k, σ, zd), but can be violated for others.

Event functions that only depend on the discrete quantities (k, σ, zd) are an important

special case that satisfy these relaxed conditions. As a result, the new conditions developed

in this section are more broadly applicable and often much easier to verify.

To state the new conditions, first consider the following generalization of the sets

M(k, σ, θ) defined in Definition 3.4.3.

Definition 3.5.1. For every k ∈ K, σ ∈ S, θ ∈ Θ̃, and i, j,m ∈ {1, . . . , nσ} with i 6= j,

define the sets

M(k, σ1:m, θ) ≡ {(z, w) ∈ X̃ ×W : σqhq(k, σ, z, w, θ) ≤ 0, ∀q ≤ m}, (3.27)

∂iM(k, σ1:m, θ) ≡ {(z, w) ∈M(k, σ1:m, θ) : hi(k, σ, z, w, θ) = 0}, (3.28)

∂ijM(k, σ1:m, θ) ≡

(z, w) ∈M(k, σ1:m, θ) :
hi(k, σ, z, w, θ) = 0

hj(k, σ, z, w, θ) = 0

 . (3.29)
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Note that the sets defined above satisfy:

M(k, σ1:m, θ) ⊂M(k, σ1:q, θ), ∀m ≥ q, (3.30)

M(k, σ1:m, θ) =
⋃

{σ̂∈S:σ̂1:m=σ1:m}

M(k, σ̂, θ), (3.31)

∂iM(k, σ1:m, θ) =
⋃

{σ̂∈S:σ̂1:m=σ1:m}

∂iM(k, σ̂, θ), (3.32)

∂ijM(k, σ1:m, θ) =
⋃

{σ̂∈S:σ̂1:m=σ1:m}

∂ijM(k, σ̂, θ). (3.33)

Remark 3.5.1. Condition 3.4.1 and 3.4.3 can be written equivalently on the sets

∂iM(k, σ1:i−1, θ) and Condition 3.4.2 on the sets ∂ijM(k, σ1:max(i,j)−1, θ). On one hand,

note that since the derivative requirements in Condition 3.4.1 and 3.4.3 are satis-

fied on ∂iM(k, σ̂, θ) for any σ̂, (3.32) implies that these requirements are satisfied on

∂iM(k, σ̂1:i−1, θ). Similarly, since the derivative requirement in Condition 3.4.2 is satis-

fied on ∂ijM(k, σ̂, θ) for any σ̂, (3.33) implies that this requirement is also satisfied on

∂ijM(k, σ̂1:max(i,j)−1, θ). On the other hand, note that if the derivative requirements in

Condition 3.4.1 and 3.4.3 are satisfied on the sets ∂iM(k, σ̂1:i−1, θ) and the derivative re-

quirement in Condition 3.4.2 is satisfied on the sets ∂ijM(k, σ̂1:max(i,j)−1, θ) for any σ̂, then

(3.30) implies that the derivative requirements Condition 3.4.1 and 3.4.3 are satisfied on

∂iM(k, σ̂, θ) and the derivative requirement in Condition 3.4.2 is satisfied on ∂ijM(k, σ̂, θ).

Next, recall that elements of the state space z ∈ X̃ have both continuous and

discrete parts, denoted by z = (zc, zd) ∈ X̃c × X̃d. The following definition partitions the

sets M(k, σ1:i, θ) further based on the value of zd.

Definition 3.5.2. For each fixed k ∈ K, θ ∈ Θ̃, zd ∈ X̃d, σ ∈ S, and i, j,m ∈ {1, . . . , nσ}
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with i 6= j, define

M(k, σ1:m, θ, z
d) ≡ {(z, w) ∈M(k, σ1:m, θ) : zd = zd}, (3.34)

∂iM(k, σ1:m, θ, z
d) ≡ {(z, w) ∈ ∂iM(k, σ1:m, θ) : zd = zd}, (3.35)

∂ijM(k, σ1:m, θ, z
d) ≡ {(z, w) ∈ ∂ijM(k, σ1:m, θ) : zd = zd}. (3.36)

Note that the sets defined above satisfy

M(k, σ1:m, θ) =
⋃

zd∈X̃d

M(k, σ1:m, θ, z
d), (3.37)

∂iM(k, σ1:m, θ) =
⋃

zd∈X̃d

∂iM(k, σ1:m, θ, z
d), (3.38)

∂ijM(k, σ1:m, θ) =
⋃

zd∈X̃d

∂ijM(k, σ1:m, θ, z
d). (3.39)

Condition 3.5.1. For each fixed k ∈ K, zd ∈ X̃d, σ ∈ S, and i ∈ {1, . . . , nσ}, at least one

of the following conditions holds:

1. For each θ ∈ Θ̃,

∂hi
∂w

(k, σ, z, w, θ) 6= 0, ∀(z, w) ∈ ∂iM(k, σ1:i−1, θ, z
d).

2. ∃π ∈ R such that hi(k, σ, z, w, θ) = π for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying

(z, w) ∈M(k, σ1:i−1, θ, z
d).

Note that the nonzero w-derivative condition in Condition 3.5.1.1 (i.e., the first

option in Condition 3.5.1) is identical to Condition 3.4.1. Thus, Condition 3.5.1 relaxes

Condition 3.4.1 by allowing zero w-derivatives in the specific case when hi depends only

on the discrete quantities (k, σ, zd). In this case, choosing any fixed (k, σ, zd) results in a

constant function hi(k, σ, (·, zd), ·, ·) = π. Therefore, hi(k, σ, ·, ·, ·) violates Condition 3.5.1.1

(provided that ∂iM(k, σ, θ, zd) is nonempty) but satisfies Condition 3.5.1.2 (i.e., the second

option in Condition 3.5.1). Purely discrete event functions are a very important special
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case that arises, e.g., when enforcing minimum uptime/downtime constraints. Specifically,

consider the function hi = xdk−xdmax−1 modeling a constraint prohibiting the counter state

xdk from exceeding the upper threshold xmax.

Condition 3.5.2. For each fixed k ∈ K, zd ∈ X̃d, σ ∈ S, and i, j ∈ {1, . . . , nσ} with i > j,

at least one of the following conditions holds:

1. For each θ ∈ Θ̃,

rank

 ∂hi
∂w (k, σ, z, w, θ)

∂hj
∂w (k, σ, z, w, θ)

 = 2, ∀(z, w) ∈ ∂ijM(k, σ1:i−1, θ, z
d).

2. ∃π ∈ R such that hi(k, σ, z, w, θ) = π for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying

(z, w) ∈ M(k, σ1:i−1, θ, z
d) or hj(k, σ, z, w, θ) = π for for all (z, w, θ) ∈ X̃ × W̃ × Θ̃

satisfying (z, w) ∈M(k, σ1:j−1, θ, z
d).

3. ∃β 6= 0 such that hi(k, σ, z, w, θ) = βhj(k, σ, z, w, θ) for all (z, w, θ) ∈ X̃ × W̃ × Θ̃

satisfying (z, w) ∈M(k, σ1:i−1, θ, z
d).

Condition 3.5.3. Choose any k ∈ K, zd ∈ X̃d, σ ∈ S, i ∈ {1, . . . , nσ}, and p ∈ {1, . . . , nw}.

Let ep denote the unit vector with the 1 in the pth position. Then, at least one of the

following conditions holds:

1. For each θ ∈ Θ̃,

rank

∂hi∂w (k, σ, z, w, θ)

eT
p

 = 2, ∀(z, w) ∈ ∂iM(k, σ1:i−1, θ, z
d) with wp = wLp or

wp = wUp .

2. ∃π ∈ R such that hi(k, σ, z, w, θ) = π for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying

(z, w) ∈M(k, σ1:i−1, θ, z
d).

3. ∃α 6= 0 such that hi(k, σ, z, w, θ) = α(wp − wLp ) for all (z, w, θ) ∈ X̃×W̃×Θ̃ satisfying

(z, w) ∈M(k, σ1:i−1, θ, z
d).
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4. ∃ρ 6= 0 such that hi(k, σ, z, w, θ) = ρ(wp − wUp ) for all (z, w, θ) ∈ X̃×W̃ ×Θ̃ satisfying

(z, w) ∈M(k, σ1:i−1, θ, z
d).

Consider any fixed (k, σ, zd) and note that derivative condition imposed on the

functions hi(k, σ, (·, zd), ·, ·) and hj(k, σ, (·, zd), ·, ·) in Condition 3.5.2.1 is identical to that

in Condition 3.4.2. However, Condition 3.5.2.2 allows Condition 3.5.2.1 to be violated

if at least one of the functions hi(k, σ, (·, zd), ·, ·) and hj(k, σ, (·, zd), ·, ·) is constant. Ad-

ditionally, Condition 3.5.2.3 allows Condition 3.5.2.1 to be violated if hi(k, σ, (·, zd), ·, ·)

is a constant multiple of hj(k, σ, (·, zd), ·, ·). Similarly, note that the derivative condition

imposed on hi(k, σ, (·, zd), ·, ·) in Condition 3.5.3.1 is identical to that in Condition 3.4.3.

However, Condition 3.5.3.2 allows Condition 3.5.3.1 to be violated if hi(k, σ, (·, zd), ·, ·) is

constant. Additionally, Conditions 3.5.3.3–3.5.3.4 allow Condition 3.5.3.1 to be violated

if hi(k, σ, (·, zd), ·, ·) is a constant multiple of either wp − wLp or wp − wUp is constant. In

summary, it is clear that Condition 3.5.2 and Condition 3.5.3 relax Condition 3.4.2 and Con-

dition 3.4.3, respectively, by allowing the derivative conditions in the latter to be violated

for some (k, σ, zd).

To prove that Conditions 3.5.1–3.5.3 are sufficient for κ to be smooth-in-expectation,

we argue that if κ is defined by a set of event functions hi satisfying Conditions 3.5.1–3.5.3,

then κ can be transformed into a new decision rule which consists of replacing the set of

hi defining κ by an alternative set of event functions satisfying Conditions 3.4.1–3.4.3 and

such that when the new rule is used in place of κ, the expected cost L(θ) is not changed.

This replacement idea is introduced in the next definition to first show that L is continuous

on all Θ̃ under Condition 3.5.1. This result is formally given in Theorem 3.5.1 below which

is established through the sequence of Lemmas 3.5.1–3.5.5 and Corollary 3.5.1.

Definition 3.5.3. Let κ be a decision rule satisfying Definition 3.4.1. For all i ∈ {1, . . . , nσ},

let ĥi : K×S× X̃×W̃ × Θ̃→ R. For each k ∈ K, zd ∈ X̃d, and σ ∈ S, let ĥi(k, σ, (·, zd), ·, ·)

be defined as follows:

(I) If ∃π ∈ R such that hi(k, σ, z, w, θ) = π for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying
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(z, w) ∈M(k, σ1:i−1, θ, z
d), then define

ĥi(k, σ, (z
c, zd), w, θ) ≡

 −1 if π ≤ 0

1 otherwise

 , ∀(zc, w, θ) ∈ X̃c × W̃ × Θ̃. (3.40)

(II) Otherwise, define

ĥi(k, σ, (z
c, zd), w, θ) ≡ hi(k, σ, (zc, zd), w, θ), ∀(zc, w, θ) ∈ X̃c × W̃ × Θ̃. (3.41)

Moreover, for every σ ∈ S, define κ̂σ : K × X̃ × W̃ × Θ̃→ Ũ by

κ̂σ(k, z, w, θ) ≡ κσ(k, z, w, θ). (3.42)

Finally, define κ̂ : K × X̃ × W̃ × Θ̃→ Ũ by

σi =

 1 if ĥi(k, σ1:i−1, z, w, θ) ≤ 0

−1 otherwise

 , ∀i ∈ {1, . . . , nσ}, (3.43)

κ̂(k, z, w, θ) ≡ κ̂σ(k, z, w, θ). (3.44)

Remark 3.5.2. Recall that in Definition 3.4.1 hi does not depend on σi:nσ and is

written as a function of the entire sequence σ only for convenience of notation. Sim-

ilarly, Definition 3.5.3 ensures that ĥi is also independent of σi:nσ . Specifically, con-

sider any (k, σ, zd) and (k, σ, zd) with σ1:i−1 = σ1:i−1. If ĥi(k, σ, (·, zd), ·, ·) is defined by

(I), then hi(k, σ, (·, zd), ·, ·) is constant on M(k, σ1:i−1, θ, z
d). Since, hi is independent of

σi:nσ , it follows that hi(k, σ, (·, zd), ·, ·) is also constant on M(k, σ1:i−1, θ, z
d), and hence

ĥi(k, σ, (·, zd), ·, ·) is also defined by (I). Since the same argument can be made starting

with σ, ĥi(k, σ, (·, zd), ·, ·) is defined by (I) if and only if ĥi(k, σ, (·, zd), ·, ·) is defined by

(I). Therefore, ĥi(k, σ, (·, zd), ·, ·) = ĥi(k, σ, (·, zd), ·, ·) for any (k, σ, zd) and (k, σ, zd) with

σ1:i−1 = σ1:i−1. Moreover, note that (3.42) gives κ̂σ = κσ and that ĥi(k, σ, (·, xd), ·, ·) is
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continuously differentiable on X̃c×W̃ × Θ̃, for each fixed k ∈ K, xd ∈ X̃d and σ ∈ S. Thus,

the modified decision rule κ̂ satisfies Definition 3.4.1.

To show that Condition 3.5.1 is sufficient for continuity of L on all of Θ̃, we first use

the next two Lemmas 3.5.1–3.5.2 to establish Lemma 3.5.3. The latter is important because,

as per Theorem 3.4.1, it implies that using κ̂ in place of κ results in an expected value that

is continuous under Conditions 3.5.1. Thus, continuity of L under Condition 3.5.1 is proven

by showing that the expected value function that results from using κ̂ is not different from

L, which is shown in the results following Lemma 3.5.3.

Lemma 3.5.1. Choose any i ∈ {1, . . . , nσ}, (k, σ̃, θ̃) ∈ K × S × Θ̃, and let

M̂(k, σ1:i, θ) denote the sets resulting from replacing hi with ĥi in Definition 3.5.1. If

(z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃) ∩M(k, σ̃1:i−1, θ̃), then (z̃, w̃) ∈M(k, σ̃1:i, θ̃).

Proof Assume (z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃) ∩ M(k, σ̃1:i−1, θ̃). Note that

(z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃) implies that σ̃j ĥj(k, σ̃, z̃, w̃, θ̃) ≤ 0, for all j ∈ {1, . . . , i} and

(z̃, w̃) ∈M(k, σ̃1:i−1, θ̃) implies that σ̃jhj(k, σ̃, z̃, w̃, θ̃) ≤ 0, for all j ∈ {1, . . . , i− 1}. Hence,

to show that (z̃, w̃) ∈M(k, σ̃1:i, θ̃), it suffices to show that σ̃ihi(k, σ̃, z̃, w̃, θ̃) ≤ 0.

Suppose ĥi(k, σ̃, (·, z̃d), ·, ·) is defined by (3.40). Correspondingly, ∃π ∈ R such that

hi(k, σ̃, z, w, θ) = π for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying (z, w) ∈ M(k, σ̃1:i−1, θ, z̃
d).

Note that (z̃, w̃) ∈ M(k, σ̃1:i−1, θ̃) implies that (z̃, w̃) ∈ M(k, σ̃1:i−1, θ, z̃
d). Thus,

hi(k, σ̃, z̃, w̃, θ̃) = π. Given that σ̃iĥi(k, σ̃, z̃, w̃, θ̃) ≤ 0, if (3.40) gives ĥi(k, σ̃, z̃, w̃, θ̃) = −1,

then we must have hi(k, σ̃, z̃, w̃, θ̃) = π ≤ 0 and σ̃i = 1. Otherwise, we

must have hi(k, σ̃, z̃, w̃, θ̃) = π > 0 and σ̃i = −1. In both cases, we have

σ̃ihi(k, σ̃, z̃, w̃, θ̃) = σ̃iπ ≤ 0. Next, suppose ĥi(k, σ̃, (·, z̃d), ·, ·) is defined by (3.41). This

implies that ĥi(k, σ̃, z̃, w̃, θ̃) = hi(k, σ̃, z̃, w̃, θ̃). But, since σ̃iĥi(k, σ̃, z̃, w̃, θ̃) ≤ 0, we must

also have σ̃ihi(k, σ̃, z̃, w̃, θ̃) ≤ 0.

Lemma 3.5.2. For any j ∈ {1, . . . , nσ} and (k, σ, θ) ∈ K × S × Θ̃,

M̂(k, σ1:j , θ) ⊂M(k, σ1:j , θ).
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Proof Choose any j ∈ {1, . . . , nσ}, (k, σ̃, θ̃) ∈ K× S × Θ̃, and (z̃, w̃) ∈ M̂(k, σ̃1:j , θ̃).

We must show that (z̃, w̃) ∈M(k, σ̃1:j , θ̃).

We first show that (z̃, w̃) satisfies the following implication, for any i with 1 ≤ i ≤ j:

(z̃, w̃) ∈M(k, σ̃1:i−1, θ̃) =⇒ (z̃, w̃) ∈M(k, σ̃1:i, θ̃). (3.45)

Choose any i with 1 ≤ i ≤ j and assume (z̃, w̃) ∈ M(k, σ̃1:i−1, θ̃). Note that

(z̃, w̃) ∈ M̂(k, σ̃1:j , θ̃) implies that (z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃) by Definition 3.5.1. Thus,

(z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃) ∩ M(k, σ̃1:i−1, θ̃). Hence, the implication in (3.45) holds by

Lemma 3.5.1.

We now proceed with induction over i. First, note that (z̃, w̃) ∈ M̂(k, σ̃1:j , θ̃) im-

plies that (z̃, w̃) ∈ M̂(k, σ̃1:0, θ̃) = X̃ × W by Definition 3.5.1. For induction, choose

some arbitrary i < j and assume (z̃, w̃) ∈ M(k, σ̃1:i−1, θ̃). By (3.45), we must have

(z̃, w̃) ∈ M(k, σ̃1:i, θ̃). Thus, by induction on i, we must have (z̃, w̃) ∈ M(k, σ̃1:i, θ̃), for

all i ≤ j. In particular, this implies (z̃, w̃) ∈M(k, σ̃1:j , θ̃) as desired.

Lemma 3.5.3. If Condition 3.5.1 holds for κ, then Condition 3.4.1 holds for κ̂.

Proof Assume κ satisfies Condition 3.5.1. To show that κ̂ satisfies Condition 3.4.1,

choose any i ∈ {1, . . . , nσ}, k ∈ K, σ ∈ S, and θ ∈ Θ̃. We must show that

∂ĥi
∂w

(k, σ, z̃, w̃, θ) 6= 0, ∀(z̃, w̃) ∈ ∂iM̂(k, σ1:i−1, θ). (3.46)

We first show that the following implication holds for any (z, w) ∈ X̃ × W̃ :

ĥi(k, σ, z, w, θ) = 0 =⇒ hi(k, σ, (·, zd), ·, ·) = ĥi(k, σ, (·, zd), ·, ·) on X̃c × W̃ × Θ̃. (3.47)

Choose any (z, w) ∈ X̃ × W̃ and assume ĥi(k, σ, z, w, θ) = 0. By Defini-

tion 3.5.3, it is impossible to have ĥi(k, σ, z, w, θ) = 0 if ĥi(k, σ, (·, zd), ·, ·) is defined

by (3.40). Hence, ĥi(k, σ, (·, zd), ·, ·) must be defined by (3.41) which gives exactly

hi(k, σ, (·, zd), ·, ·) = ĥi(k, σ, (·, zd), ·, ·) on X̃c × W̃ × Θ̃.
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To show (3.46), choose any (z̃, w̃) ∈ ∂iM̂(k, σ1:i−1, θ), which implies

ĥi(k, σ, z̃, w̃, θ) = 0 by definition. First, note that ĥi(k, σ, z̃, w̃, θ) = 0 implies the following,

by (3.47) and by noting that W̃ is open:

∂hi
∂w

(k, σ, (zc, z̃d), w, θ) =
∂ĥi
∂w

(k, σ, (zc, z̃d), w, θ), ∀(zc, w, θ) ∈ X̃c × W̃ × Θ̃. (3.48)

Second, note that (z̃, w̃) ∈ ∂iM̂(k, σ1:i−1, θ) means that (z̃, w̃) ∈ M̂(k, σ1:i−1, θ), by

definition. Hence, by Lemma 3.5.2, we must have (z̃, w̃) ∈ M(k, σ1:i−1, θ). Since

ĥi(k, σ, z̃, w̃, θ) = 0, we must have hi(k, σ, z̃, w̃, θ) = 0 by (3.47). But, since

(z̃, w̃) ∈ M(k, σ1:i−1, θ), hi(k, σ, z̃, w̃, θ) = 0 implies that (z̃, w̃) ∈ ∂iM(k, σ1:i−1, θ) by def-

inition. Using (3.35) in Definition 3.5.2, it is clear that (z̃, w̃) ∈ ∂iM(k, σ1:i−1, θ) implies

that (z̃, w̃) ∈ ∂iM(k, σ1:i−1, θ, z̃
d). Thus, by the hypothesis that κ satisfies Condition 3.5.1,

we must have ∂hi
∂w (k, σ, z̃, w̃, θ) 6= 0 and hence ∂ĥi

∂w (k, σ, z̃, w̃, θ) 6= 0 by (3.48). Since the

choice (z̃, w̃) ∈ ∂iM̂(k, σ1:i−1, θ) was arbitrary, (3.46) holds.

Next, we use Definition 3.5.3 to show that using κ̂ in place of κ in (3.3)–(3.5) leads

to an expected value L̂ such that L̂(θ) = L(θ) for all θ ∈ Θ̃. For clarity of arguments, this

result is established in Corollary 3.5.1 below using the definition of L̂, which is given first,

and Lemmas 3.5.4–3.5.5 which are given next. To define L̂(θ), define ûk(ω, θ) and x̂k(ω, θ)

for every (ω, θ) ∈ Ω̃× Θ̃ by the following recursion, which is analogous to (3.3)–(3.5):

x̂0(ω, θ) ≡ b0, (3.49)

ûk(ω, θ) ≡ κ̂(k, x̂k(ω, θ), wk, θ), (3.50)

x̂k+1(ω, θ) ≡ f(k, ûk(ω, θ), x̂k(ω, θ), wk, θ). (3.51)

Note that the solution of this recursion exists because the modified decision rule κ̂ still maps

into Ũ and the function f still maps into X̃. Moreover, define ˆ̀(θ,ω) by

ˆ̀(θ,ω) ≡
K∑
k=0

`S(k, ûk(ω, θ), x̂k(ω, θ), wk, θ), (3.52)
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and denote the expected value of ˆ̀(θ,ω) by

L̂(θ) ≡ E[ˆ̀(θ,ω)]. (3.53)

Lemma 3.5.4. Choose any i ∈ {1, . . . , nσ}. For any (k, σ, z, w, θ) ∈ K × S × X̃ × W̃ × Θ̃

such that (z, w) ∈M(k, σ1:i−1, θ, z
d), hi(k, σ, z, w, θ) ≤ 0 ⇐⇒ ĥi(k, σ, z, w, θ) ≤ 0.

Proof Choose any (k, σ, z, w, θ) ∈ K × S × X̃ × W̃ × Θ̃ such that

(z, w) ∈M(k, σ1:i−1, θ, z
d).

Assume hi(k, σ, z, w, θ) ≤ 0. We must show that ĥi(k, σ, z, w, θ) ≤ 0. First, sup-

pose ∃π ∈ R such that hi(k, σ, z, w, θ) = π for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying

(z, w) ∈ M(k, σ1:i−1, θ, z
d). This implies that hi(k, σ, z, w, θ) = π. Moreover, accord-

ing to Definition 3.5.3, this implies that ĥi(k, σ, z, w, θ) is given by (3.40). Specifically,

since hi(k, σ, z, w, θ) ≤ 0 by assumption, we must have that π ≤ 0, which then im-

plies that ĥi(k, σ, z, w, θ) = −1 ≤ 0 as per (3.40). Second, suppose @π ∈ R such that

hi(k, σ, z, w, θ) = π for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying (z, w) ∈ M(k, σ1:i−1, θ, z
d).

According to Definition 3.5.3, this implies that ĥi(k, σ, z, w, θ) = hi(k, σ, z, w, θ) ≤ 0 as per

(3.41).

Next, assume ĥi(k, σ, z, w, θ) ≤ 0. We must show that hi(k, σ, z, w, θ) ≤ 0.

First, suppose ĥi(k, σ, (·, zd), ·, ·) is defined by (3.40). Correspondingly, there must ex-

ist π ∈ R such that hi(k, σ, z, w, θ) = π for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying

(z, w) ∈ M(k, σ1:i−1, θ, z
d). By (3.40), the assumption ĥi(k, σ, z, w, θ) ≤ 0 holds only if

π ≤ 0. But, this implies that hi(k, σ, z, w, θ) = π ≤ 0. Second, suppose ĥi(k, σ, (·, zd), ·, ·)

is defined by (3.41). This implies directly that hi(k, σ, z, w, θ) = ĥi(k, σ, z, w, θ) ≤ 0 by

assumption.

Lemma 3.5.5. For every (k, z, w, θ) ∈ K × X̃ ×W × Θ̃, κ(k, z, w, θ) = κ̂(k, z, w, θ).

Proof Choose any (k, z, w, θ) ∈ K × X̃ × W × Θ̃ and let σ and σ̂ be the bi-

nary sequences obtained by applying (3.12) and (3.43), respectively. To show that
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κ(k, z, w, θ) = κ̂(k, z, w, θ), it suffices to show that σ = σ̂ according to (3.13), (3.42), and

(3.44).

To show that σ = σ̂, we use induction. Since σ satisfies (3.12), it follows that

(z, w) ∈ M(k, σ1:i−1, θ, z
d) for all i ≤ nσ. Hence, (z, w) ∈ M(k, σ1:0, θ, z

d). But,

this implies that h1(k, σ1:0, z, w, θ) and ĥ1(k, σ1:0, z, w, θ) have the same sign according to

Lemma 3.5.4. However, note that σ1:0 and σ̂1:0 are both empty and thus σ1:0 = σ̂1:0.

Thus, h1(k, σ1:0, z, w, θ) and ĥ1(k, σ̂1:0, z, w, θ) have the same sign. This implies that

σ1 = σ̂1. For induction, choose any i ≥ 1 and assume σ1:i−1 = σ̂1:i−1. By Lemma 3.5.4,

hi(k, σ1:i−1, z, w, θ) and ĥi(k, σ1:i−1, z, w, θ) have the same sign. But, since σ1:i−1 = σ̂1:i−1,

hi(k, σ1:i−1, z, w, θ) and ĥi(k, σ̂1:i−1, z, w, θ) must have the same sign, which implies that

σi = σ̂i. Hence, σ1:i = σ̂1:i. By induction on i, σi = σ̂i for all i ≤ nσ. This gives σ = σ̂ as

desired.

Corollary 3.5.1. For any θ ∈ Θ̃, L̂(θ) = L(θ).

Proof Choose any (ω, θ) ∈ Ω × Θ̃, let u0:K and x0:K be trajectories of the re-

cursion (3.3)–(3.5), and let û0:K and x̂0:K be trajectories of the recursion (3.49)–(3.51).

It is sufficient to show that uk = ûk and xk+1 = x̂k+1, ∀k ∈ K. Specifically, this

implies that ˆ̀(ω, θ) = `(ω, θ) by (3.6) and (3.52), leading to the desired result that

L̂(θ) = E[ˆ̀(ω, θ)] = E[`(ω, θ)] = L(θ) since the choice of (ω, θ) is arbitrary.

To show that uk = ûk and xk+1 = x̂k+1, ∀k ∈ K, we first show that the following

implication holds for any k ∈ K:

xk = x̂k =⇒

 uk = ûk

xk+1 = x̂k+1

 . (3.54)

Assume xk = x̂k. By Lemma 3.5.5, we immediately have

κ(k, xk, wk, θ) = κ̂(k, x̂k, wk, θ), which implies that uk = ûk by (3.4) and (3.50).

But, xk = x̂k and uk = ûk leads to xk+1 = x̂k+1 by (3.5) and (3.51).

To finish the proof, we now proceed with finite induction over k. Noting that
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x0 = x̂0 = b0 ∈ X̃, a recursive application of (3.54) shows that uk = ûk and xk+1 = x̂k+1

for all k ∈ K.

Theorem 3.5.1. If κ satisfies Condition 3.5.1, then L is continuous on Θ̃.

Proof With Lemma 3.5.3, a direct application of Theorem 3.4.1 implies that L̂ is

continuous on Θ̃ under Condition 3.5.1. Thus, continuity of L on Θ̃ under Condition 3.5.1

follows by applying Corollary 3.5.1.

Finally, we show that L ∈ C1(Θ̃,R) under Conditions 3.5.1–3.5.3. This result is

formally given in Theorem 3.5.2 below, which is established using the next definition, the

sequence of Lemmas 3.5.6–3.5.13, and Corollary 3.5.3.

Definition 3.5.4. Let κ be a decision rule satisfying Definition 3.4.1 and let κ̂ be

defined as in Definition 3.5.3. For all i ∈ {1, . . . , nσ} and p ∈ {1, . . . , nw}, let

h́i : K × S × X̃ × W̃ × Θ̃→ R. For each k ∈ K, zd ∈ X̃d, and σ ∈ S, let h́i(k, σ, (·, zd), ·, ·)

be defined in the first case that holds on the following list:

(a) If ∃β 6= 0 and some j < i such that ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ), for all

(z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying (z, w) ∈ M̂(k, σ1:i−1, θ, z
d), then define

h́i(k, σ, (z
c, zd), w, θ) ≡ −βσj , ∀(zc, w, θ) ∈ X̃c × W̃ × Θ̃. (3.55)

(b) If ∃α 6= 0 such that ĥi(k, σ, (z
c, zd), w, θ) = α(wp − wLp ), for all (z, w, θ) ∈ X̃ × W̃ × Θ̃

satisfying (z, w) ∈ M̂(k, σ1:i−1, θ, z
d), then define

h́i(k, σ, (z
c, zd), w, θ) ≡ α, ∀(zc, w, θ) ∈ X̃c × W̃ × Θ̃. (3.56)

(c) If ∃ρ 6= 0 such that ĥi(k, σ, (z
c, zd), w, θ) = ρ(wp − wUp ), for all (z, w, θ) ∈ X̃ × W̃ × Θ̃

satisfying (z, w) ∈ M̂(k, σ1:i−1, θ, z
d), then define

h́i(k, σ, (z
c, zd), w, θ) ≡ −ρ, ∀(zc, w, θ) ∈ X̃c × W̃ × Θ̃. (3.57)
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(d) Otherwise, define

h́i(k, σ, (z
c, zd), w, θ) ≡ ĥi(k, σ, (zc, zd), w, θ), ∀(zc, w, θ) ∈ X̃c × W̃ × Θ̃. (3.58)

Additionally, for every σ ∈ S, define κ́σ : K × X̃ × W̃ × Θ̃→ Ũ by

κ́σ(k, z, w, θ) ≡ κσ(k, z, w, θ). (3.59)

Finally, define κ́ : K × X̃ × W̃ × Θ̃→ Ũ by

σi =

 1 if h́i(k, σ, z, w, θ) ≤ 0

−1 otherwise

 , ∀i ∈ {1, . . . , nσ}, (3.60)

κ́(k, z, w, θ) ≡ κ́σ(k, z, w, θ). (3.61)

Remark 3.5.3. Recall that κ̂ as defined in Definition 3.5.4 satisfies Definition 3.4.1 (Re-

mark 3.5.2). Accordingly, Definition 3.5.4 ensures that κ́ satisfies Definition 3.4.1. In

particular, following similar arguments as in Remark 3.5.2, it can be easily shown that

Definition 3.5.4 ensures that h́i depends only on σ1:i−1 and the continuous differentiability

requirements imposed on hi and κσ in Definition 3.4.1 are ensured by Definition 3.5.4 for

h́i and κ̂σ.

We first use the next three Lemmas 3.5.6–3.5.8 to establish Lemma 3.5.9 which, as

per Theorem 3.4.1, implies that using κ́ in place of κ results in an expected value that is

continuously differentiable under Conditions 3.5.1–3.5.3. Thus, continuous differentiability

of L under Conditions 3.5.1–3.5.3 is proven by showing that the expected value function

that results from using κ́ is not different from L, which is shown in the results following

Lemma 3.5.9.

Lemma 3.5.6. Choose any i ∈ {1, . . . , nσ}, (k, σ̃, θ̃) ∈ K × S × Θ̃, and let

Ḿ(k, σ1:i, θ) denote the sets resulting from replacing hi with h́i in Definition 3.5.1. If
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(z̃, w̃) ∈ Ḿ(k, σ̃1:i, θ̃) ∩ M̂(k, σ̃1:i−1, θ̃), then (z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃).

Proof Assume (z̃, w̃) ∈ Ḿ(k, σ̃1:i, θ̃) ∩ M̂(k, σ̃1:i−1, θ̃). This implies that

(z̃, w̃) ∈ M̂(k, σ̃1:i−1, θ, z̃
d), that σ̃qh́q(k, σ̃, z̃, w̃, θ̃) ≤ 0 for all q ∈ {1, . . . , i}, and that

σ̃qĥq(k, σ̃, z̃, w̃, θ̃) ≤ 0, for all q ∈ {1, . . . , i− 1}. Hence, to show that (z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃),

it suffices to show that

σ̃iĥi(k, σ̃, z̃, w̃, θ̃) ≤ 0. (3.62)

We must show (3.62) in all of the following cases:

Case 1: Suppose h́i(k, σ̃, (·, z̃d), ·, ·) is defined by (3.55). Correspondingly, ∃β 6= 0

and some j < i, such that ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ), for all (z, w, θ) ∈ X̃ × W̃ × Θ̃

satisfying (z, w) ∈ M̂(k, σ̃1:i−1, θ, z̃
d). Recall that σ̃ih́i(k, σ̃, z̃, w̃, θ̃) ≤ 0 and

(z̃, w̃) ∈ M̂(k, σ̃1:i−1, θ, z̃
d). This implies ĥi(k, σ̃, z̃, w̃, θ̃) = βĥj(k, σ̃, z̃, w̃, θ̃) and

σ̃j ĥj(k, σ̃, z̃, w̃, θ̃) ≤ 0. Consider the following sub-cases:

Case 1 (a): Suppose (3.55) gives h́i(k, σ̃, z̃, w̃, θ̃) = −βσ̃j < 0. In this situation,

σ̃ih́i(k, σ̃, z̃, w̃, θ̃) ≤ 0 implies that σ̃i = 1. Consider the following sub-cases:

Case 1 (a)(i): ĥj(k, σ̃, z̃, w̃, θ̃) = 0. In this situation, we have

ĥi(k, σ̃, z̃, w̃, θ̃) = βĥj(k, σ̃, z̃, w̃, θ̃) = 0 for any β.

Case 1 (a)(ii): ĥj(k, σ̃, z̃, w̃, θ̃) < 0. In this situation,

σ̃j ĥj(k, σ̃, z̃, w̃, θ̃) ≤ 0 requires σ̃j = 1 and so −βσ̃j < 0 implies that

β > 0, leading to ĥi(k, σ̃, z̃, w̃, θ̃) = βĥj(k, σ̃, z̃, w̃, θ̃) < 0.

Case 1 (a)(iii): ĥj(k, σ̃, z̃, w̃, θ̃) > 0. In this situation,

σ̃j ĥj(k, σ̃, z̃, w̃, θ̃) ≤ 0 requires σ̃j = −1, and so −βσ̃j < 0 implies

that β < 0, which leads to ĥi(k, σ̃, z̃, w̃, θ̃) = βĥj(k, σ̃, z̃, w̃, θ̃) < 0.

Since all of the Cases 1 (a)(i)–(iii) give ĥi(k, σ̃, z̃, w̃, θ̃) ≤ 0 and σ̃i = 1 in Case

1 (a), (3.62) holds.

Case 1 (b): Suppose (3.55) gives h́i(k, σ̃, z̃, w̃, θ̃) = −βσ̃j > 0. In this situation,
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σ̃ih́i(k, σ̃, z̃, w̃, θ̃) ≤ 0 implies that σ̃i = −1. Consider the following sub-cases:

Case 1 (b)(i): ĥj(k, σ̃, z̃, w̃, θ̃) = 0. This situation is exactly similar

to Case 1 (a)(i), which gives ĥi(k, σ̃, z̃, w̃, θ̃) = βĥj(k, σ̃, z̃, w̃, θ̃) = 0.

Case 1 (b)(ii): ĥj(k, σ̃, z̃, w̃, θ̃) < 0. This implies σ̃j = 1 as in Case

1 (a)(ii). But, since −βσ̃j > 0, we must have β < 0, which leads to

ĥi(k, σ̃, z̃, w̃, θ̃) = βĥj(k, σ̃, z̃, w̃, θ̃) > 0.

Case 1 (b)(iii): ĥj(k, σ̃, z̃, w̃, θ̃) > 0. This implies σ̃j = −1 as in Case

1 (a)(iii). But, since −βσ̃j > 0, we must have β > 0, which leads to

ĥi(k, σ̃, z̃, w̃, θ̃) = βĥj(k, σ̃, z̃, w̃, θ̃) > 0.

Since all of the Cases 1 (b)(i)–(iii) give ĥi(k, σ̃, z̃, w̃, θ̃) ≥ 0 and σ̃i = −1 in

Case 1 (b), (3.62) holds.

Case 2: Suppose h́i(k, σ̃, (·, z̃d), ·, ·) is defined by (3.56). Correspondingly,

∃α 6= 0 such that ĥi(k, σ̃, (z
c, z̃d), w, θ) = α(wp − wLp ), for all (z, w, θ) ∈ X̃ × W̃ × Θ̃

satisfying (z, w) ∈ M̂(k, σ̃1:i−1, θ, z̃
d). Recall that σ̃ih́i(k, σ̃, z̃, w̃, θ̃) ≤ 0 and

(z̃, w̃) ∈ M̂(k, σ̃1:i−1, θ, z̃
d). The latter implies ĥi(k, σ̃, z̃, w̃, θ̃) = α(w̃p − wLp ). If (3.56)

gives h́i(k, σ̃, z̃, w̃, θ̃) = α < 0, then we must have σ̃i = 1. But, since (w̃p − wLp ) ≥ 0, we

have ĥi(k, σ̃, z̃, w̃, θ̃) = α(w̃p − wLp ) ≤ 0. Otherwise, (3.56) gives h́i(k, σ̃, z̃, w̃, θ̃) = α > 0,

which requires σ̃i = −1. This leads to ĥi(k, σ̃, z̃, w̃, θ̃) = α(w̃p − wLp ) ≥ 0. In either situa-

tion, (3.62) holds.

Case 3: Suppose h́i(k, σ̃, (·, z̃d), ·, ·) is defined by (3.57). Correspondingly,

∃ρ 6= 0 such that ĥi(k, σ̃, (z
c, z̃d), w, θ) = ρ(wp − wUp ), for all (z, w, θ) ∈ X̃ × W̃ × Θ̃

satisfying (z, w) ∈ M̂(k, σ̃1:i−1, θ, z̃
d). Recall that σ̃ih́i(k, σ̃, z̃, w̃, θ̃) ≤ 0 and

(z̃, w̃) ∈ M̂(k, σ̃1:i−1, θ, z̃
d). The latter implies ĥi(k, σ̃, z̃, w̃, θ̃) = α(w̃p − wUp ). If (3.57)

gives h́i(k, σ̃, z̃, w̃, θ̃) = −ρ < 0, then we must have σ̃i = 1 and ρ > 0. But, since

(w̃p − wUp ) ≤ 0, this leads to ĥi(k, σ̃, z̃, w̃, θ̃) = ρ(w̃p − wUp ) ≤ 0. Otherwise, (3.57)

gives h́i(k, σ̃, z̃, w̃, θ̃) = −ρ > 0, which requires σ̃i = −1 and ρ < 0, leading to
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ĥi(k, σ̃, z̃, w̃, θ̃) = ρ(w̃p − wUp ) ≥ 0. In either situation, (3.62) holds.

Case 4: Suppose h́i(k, σ̃, (·, z̃d), ·, ·) is defined by (3.58). This implies that

h́i(k, σ̃, z̃, w̃, θ̃) = ĥi(k, σ̃, z̃, w̃, θ̃). But, since σ̃ih́i(k, σ̃, z̃, w̃, θ̃) ≤ 0, (3.62) holds.

Lemma 3.5.7. For any j ∈ {1, . . . , nσ} and (k, σ, θ) ∈ K × S × Θ̃,

Ḿ(k, σ1:j , θ) ⊂ M̂(k, σ1:j , θ).

Proof Choose any j ∈ {1, . . . , nσ}, (k, σ̃, θ̃) ∈ K× S × Θ̃, and (z̃, w̃) ∈ Ḿ(k, σ̃1:j , θ̃).

We must show that (z̃, w̃) ∈ M̂(k, σ̃1:j , θ̃).

We first show that (z̃, w̃) satisfies the following implication, for any i with 1 ≤ i ≤ j:

(z̃, w̃) ∈ M̂(k, σ̃1:i−1, θ̃) =⇒ (z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃). (3.63)

Choose any i with 1 ≤ i ≤ j and assume (z̃, w̃) ∈ M̂(k, σ̃1:i−1, θ̃). Note that

(z̃, w̃) ∈ Ḿ(k, σ̃1:j , θ̃) implies that (z̃, w̃) ∈ Ḿ(k, σ̃1:i, θ̃) by Definition 3.5.1. Thus,

(z̃, w̃) ∈ Ḿ(k, σ̃1:i, θ̃) ∩ M̂(k, σ̃1:i−1, θ̃). Hence, the implication in (3.63) holds by

Lemma 3.5.6.

We now proceed with induction over i. First, note that (z̃, w̃) ∈ Ḿ(k, σ̃1:j , θ̃) im-

plies that (z̃, w̃) ∈ Ḿ(k, σ̃1:0, θ̃) = X̃ × W , by Definition 3.5.1. For induction, choose

some arbitrary i ≤ j and assume (z̃, w̃) ∈ M̂(k, σ̃1:i−1, θ̃). By (3.63), we must have

(z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃). Thus, by induction on i, we must have (z̃, w̃) ∈ M̂(k, σ̃1:i, θ̃), for

all i ≤ j. In particular, this implies (z̃, w̃) ∈ M̂(k, σ̃1:j , θ̃) as desired.

Lemma 3.5.8. Choose any (k, σ, zd) ∈ K×S × X̃d. If ∃(zc, w, θ) ∈ X̃c× W̃ × Θ̃ such that

h́i(k, σ, z, w, θ) = 0, then the following conditions hold:

(i) h́i(k, σ, (·, zd), ·, ·) = ĥi(k, σ, (·, zd), ·, ·) = hi(k, σ, (·, zd), ·, ·) on all of X̃c × W̃ × Θ̃.

(ii) ∂h́i
∂w (k, σ, (·, zd), ·, ·) = ∂ĥi

∂w (k, σ, (·, zd), ·, ·) = ∂hi
∂w (k, σ, (·, zd), ·, ·) on all of X̃c × W̃ × Θ̃.

(iii) ĥi(k, σ, (·, zd), ·, ·) does not satisfy the hypotheses in cases (a)–(c) of Definition 3.5.4.

(iv) hi(k, σ, (·, zd), ·, ·) is not constant on M(k, σ1:i−1, θ, z
d).
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Proof Assume ∃(zc, w, θ) ∈ X̃c × W̃ × Θ̃ such that h́i(k, σ, z, w, θ) = 0.

This implies that h́i(k, σ, (·, zd), ·, ·) is not defined by any of (3.55)–(3.57) in Defini-

tion 3.5.4 because this would contradict h́i(k, σ, z, w, θ) = 0. Thus, conclusion (iii)

holds. Moreover, h́i(k, σ, (·, zd), ·, ·) must be defined by (3.58). Specifically, we have

h́i(k, σ, (·, zd), ·, ·) = ĥi(k, σ, (·, zd), ·, ·), which means that ĥi(k, σ, z, w, θ) = 0. Suppose

hi(k, σ, (·, zd), ·, ·) is constant on M(k, σ1:i−1, θ, z
d). This implies that ĥi(k, σ, (·, zd), ·, ·) is

defined by (3.40) in Definition 3.5.3. Specifically, (3.40) gives ĥi(k, σ, (·, zd), ·, ·) = ±1.

But, since this contradicts ĥi(k, σ, z, w, θ) = 0, hi(k, σ, (·, zd), ·, ·) cannot be con-

stant on M(k, σ1:i−1, θ, z
d). Thus, conclusion (iv) holds. Moreover, it implies that

ĥi(k, σ, (·, zd), ·, ·) is defined by (3.41) in Definition 3.5.3. Specifically, (3.41) gives

ĥi(k, σ, (·, zd), ·, ·) = hi(k, σ, (·, zd), ·, ·) on X̃c × W̃ × Θ̃. Thus, conclusion (i) holds. Fi-

nally, conclusion (ii) follows from conclusion (i) since W̃ is open.

Lemma 3.5.9. If Conditions 3.5.1–3.5.3 hold for κ, then Conditions 3.4.1–3.4.3 hold for

κ́.

Proof Assume κ satisfies Conditions 3.5.1–3.5.3 and note that, for any

i ∈ {1, . . . , nσ} and (k, σ, θ) ∈ K × S × Θ̃, Ḿ(k, σ1:i, θ) ⊂ M(k, σ1:i, θ) by Lemma 3.5.2

and Lemma 3.5.7. Moreover, note that (z̃, w̃) ∈ ∂iM(k, σ1:i−1, θ) implies that

(z̃, w̃) ∈ ∂iM(k, σ1:i−1, θ, z̃
d).

To show that κ́ satisfies Condition 3.4.1, choose any i ∈ {1, . . . , nσ}, k ∈ K, σ ∈ S,

and θ ∈ Θ̃. We must show that

∂h́i
∂w

(k, σ, z̃, w̃, θ) 6= 0, ∀(z̃, w̃) ∈ ∂iḾ(k, σ1:i−1, θ). (3.64)

Choose any (z̃, w̃) ∈ ∂iḾ(k, σ1:i−1, θ). First, this implies that h́i(k, σ, z̃, w̃, θ) = 0,

by definition. Hence, hi(k, σ, z̃, w̃, θ) = 0 by Lemma 3.5.8. Second, it implies that

(z̃, w̃) ∈ Ḿ(k, σ1:i−1, θ) ⊂ M(k, σ1:i−1, θ), which means that (z̃, w̃) ∈ M(k, σ1:i−1, θ, z̃
d).

Hence, hi(k, σ, z̃, w̃, θ) = 0 implies that (z̃, w̃) ∈ ∂iM(k, σ1:i−1, θ, z̃
d) by definition. Note

that Conclusion (iv) in Lemma 3.5.8 combined with the hypothesis that κ satisfies Con-
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dition 3.5.1 implies that hi satisfies Condition 3.5.1.1. Hence, with Conclusion (ii) in

Lemma 3.5.8 and (z̃, w̃) ∈ ∂iM(k, σ1:i−1, θ, z̃
d), we must have

∂h́i
∂w

(k, σ, z̃, w̃, θ) =
∂hi
∂w

(k, σ, z̃, w̃, θ) 6= 0. (3.65)

Since the choice (z̃, w̃) ∈ ∂iḾ(k, σ1:i−1, θ) was arbitrary, (3.64) holds.

To show that κ́ satisfies Condition 3.4.2, choose any i, j ∈ {1, . . . , nσ} with i > j,

k ∈ K, σ ∈ S, and θ ∈ Θ̃. We must show that

rank

 ∂h́i
∂w (k, σ, z, w, θ)

∂h́j
∂w (k, σ, z, w, θ)

 = 2, ∀(z, w) ∈ ∂ijḾ(k, σ1:i−1, θ). (3.66)

Choose any (z̃, w̃) ∈ ∂ijḾ(k, σ1:i−1, θ). First, this implies that

h́i(k, σ, z̃, w̃, θ) = h́j(k, σ, z̃, w̃, θ) = 0 by definition. Thus, all of the

conclusions of Lemma 3.5.8 hold for i and j. By Conclusion (i) of

Lemma 3.5.8, hi(k, σ, z̃, w̃, θ) = hj(k, σ, z̃, w̃, θ) = 0. Second, it implies that

(z̃, w̃) ∈ Ḿ(k, σ1:i−1, θ) ⊂ M(k, σ1:i−1, θ), which means that (z̃, w̃) ∈ M(k, σ1:i−1, θ, z̃
d).

Hence, hi(k, σ, z̃, w̃, θ) = hj(k, σ, z̃, w̃, θ) = 0 implies that (z̃, w̃) ∈ ∂ijM(k, σ1:i−1, θ, z̃
d)

by definition. Recall that κ satisfies Condition 3.5.2 by hypothesis. Conclusion (iv)

in Lemma 3.5.8 implies that hi and hj do not satisfy Condition 3.5.2.2. Conclusion

(iii) of Lemma 3.5.8 similarly implies that hi(k, σ, (·, z̃d), ·, ·) does not satisfy Condi-

tion 3.5.2.3. Specifically, by Conclusion (iii), there does not exist β 6= 0 such that

ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ) for all (zc, w, θ) such that (z, w) ∈ M̂(k, σ1:i−1, θ, z̃
d).

But, by Conclusion (i) of Lemma 3.5.8, it follows that there does not exist β 6= 0 such that

hi(k, σ, z, w, θ) = βhj(k, σ, z, w, θ) for all (zc, w, θ) such that (z, w) ∈ M̂(k, σ1:i−1, θ, z̃
d).

Finally, since M̂(k, σ1:i−1, θ, z̃
d) ⊂ M(k, σ1:i−1, θ, z̃

d) by Lemma 3.5.2, there cannot

be β 6= 0 such that hi(k, σ, z, w, θ) = βhj(k, σ, z, w, θ) for all (zc, w, θ) such that

(z, w) ∈ M(k, σ1:i−1, θ, z̃
d). This implies that Condition 3.5.2.3 cannot hold for the

chosen i and j. Therefore, Condition 3.5.2.1 must hold. Hence, with Conclusion (ii) in
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Lemma 3.5.8 and (z̃, w̃) ∈ ∂ijM(k, σ1:i−1, θ, z̃
d), we must have

rank

 ∂h́i
∂w (k, σ, z̃, w̃, θ)

∂h́j
∂w (k, σ, z̃, w̃, θ)

 = rank

 ∂hi
∂w (k, σ, z̃, w̃, θ)

∂hj
∂w (k, σ, z̃, w̃, θ)

 = 2. (3.67)

Since the choice (z̃, w̃) ∈ ∂ijḾ(k, σ1:i−1, θ) was arbitrary, (3.66) holds.

Lastly, to show that κ́ satisfies Condition 3.4.3, choose any i ∈ {1, . . . , nσ},

p ∈ {1, . . . , nw}, k ∈ K, σ ∈ S, and θ ∈ Θ̃. We must to show that

rank

 ∂h́i
∂w (k, σ, z, w, θ)

eTp

 = 2, ∀(z, w) ∈ ∂iḾ(k, σ1:i−1, θ) with wp = wLp or wp = wUp .

(3.68)

Choose any (z̃, w̃) ∈ ∂iḾ(k, σ1:i−1, θ) with wp = wLp or wp = wUp . First, this implies

that h́i(k, σ, z̃, w̃, θ) = 0 by definition. Hence, all of the conclusions of Lemma 3.5.8

hold. By Conclusion (i) of Lemma 3.5.8, hi(k, σ, z̃, w̃, θ) = 0. Second, it implies that

(z̃, w̃) ∈ Ḿ(k, σ1:i−1, θ) ⊂ M(k, σ1:i−1, θ), which means that (z̃, w̃) ∈ M(k, σ1:i−1, θ, z̃
d).

Hence, hi(k, σ, z̃, w̃, θ) = 0 implies that (z̃, w̃) ∈ ∂iM(k, σ1:i−1, θ, z̃
d) by definition. Re-

call that κ satisfies Condition 3.5.3 by hypothesis. Thus, Conclusion (iv) in Lemma 3.5.8

implies that hi does not satisfy Condition 3.5.3.2. Conclusion (iii) of Lemma 3.5.8

similarly implies that hi(k, σ, (·, z̃d), ·, ·) satisfies neither Condition 3.5.3.3 nor 3.5.3.4.

Specifically, first note that by Conclusion (iii), there does not exist α 6= 0 such that

ĥi(k, σ, z, w, θ) = α(wp − wLp ) for all (zc, w, θ) such that (z, w) ∈ M̂(k, σ1:i−1, θ, z̃
d). But,

by Conclusion (i) of Lemma 3.5.8, it follows that there does not exist α 6= 0 such that

hi(k, σ, z, w, θ) = α(wp − wLp ) for all (zc, w, θ) such that (z, w) ∈ M̂(k, σ1:i−1, θ, z̃
d). But,

since M̂(k, σ1:i−1, θ, z̃
d) ⊂ M(k, σ1:i−1, θ, z̃

d) by Lemma 3.5.2, there cannot be α 6= 0 such

that hi(k, σ, z, w, θ) = α(wp − wLp ) for all (zc, w, θ) such that (z, w) ∈ M(k, σ1:i−1, θ, z̃
d).

This implies that Condition 3.5.3.3 cannot hold. Second, note that by Conclusion (iii),

there does not exist ρ 6= 0 such that ĥi(k, σ, z, w, θ) = ρ(wp − wUp ) for all (zc, w, θ) such
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that (z, w) ∈ M̂(k, σ1:i−1, θ, z̃
d). But, by Conclusion (i) of Lemma 3.5.8, it follows that

there does not exist ρ 6= 0 such that hi(k, σ, z, w, θ) = ρ(wp − wUp ) for all (zc, w, θ) such

that (z, w) ∈ M̂(k, σ1:i−1, θ, z̃
d). But, since M̂(k, σ1:i−1, θ, z̃

d) ⊂ M(k, σ1:i−1, θ, z̃
d) by

Lemma 3.5.2, there cannot be ρ 6= 0 such that hi(k, σ, z, w, θ) = ρ(wp−wUp ) for all (zc, w, θ)

such that (z, w) ∈ M(k, σ1:i−1, θ, z̃
d). This implies that Condition 3.5.3.4 cannot hold.

Therefore, Condition 3.5.3.1 must hold. Thus, with Conclusion (ii) in Lemma 3.5.8 and

(z̃, w̃) ∈ ∂iM(k, σ1:i−1, θ, z̃
d), we must have

rank

 ∂h́i
∂w (k, σ, z̃, w̃, θ)

eTp

 = rank

 ∂hi
∂w (k, σ, z̃, w̃, θ)

eTp

 = 2. (3.69)

Since the choice (z̃, w̃) ∈ ∂iḾ(k, σ1:i−1, θ) was arbitrary, (3.68) holds.

Next, we use Definition 3.5.4 to show that using κ́ in place of κ in (3.3)–(3.5) leads

to an expected value Ĺ such that Ĺ(θ) = L(θ) for all θ ∈ Θ̃. This result is established in

Corollary 3.5.3 below, and for clarity of arguments, we first define Ĺ and then establish

the sequence of Lemmas 3.5.10–3.5.11, Corollary 3.5.2 and Lemmas 3.5.12–3.5.5. To define

Ĺ(θ), first define úk(ω, θ) and x́k(ω, θ) for every (ω, θ) ∈ Ω̃× Θ̃ by the following recursion,

which is analogous to (3.3)–(3.5):

x́0(ω, θ) ≡ b0, (3.70)

úk(ω, θ) ≡ κ́(k, x́k(ω, θ), wk, θ), (3.71)

x́k+1(ω, θ) ≡ f(k, úk(ω, θ), x́k(ω, θ), wk, θ). (3.72)

Note that the solution of this recursion exists because the modified decision rule κ́ still maps

into Ũ and the function f still maps into X̃. Moreover, define ´̀(θ,ω) by

´̀(θ,ω) ≡
K∑
k=0

`S(k, úk(ω, θ), x́k(ω, θ), wk, θ), (3.73)
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and denote the expected value of ´̀(θ,ω) by

Ĺ(θ) ≡ E[´̀(θ,ω)]. (3.74)

We first establish Corollary 3.5.2 using the next two Lemmas 3.5.10–3.5.11.

Lemma 3.5.10. For any i ∈ {1, . . . , nσ} and (k, σ, z, w, θ) ∈ K×S × X̃ × W̃ × Θ̃ such that

(z, w) ∈ M̂(k, σ1:i−1, θ) and w is in the interior of W, the following implications hold:

ĥi(k, σ, z, w, θ) < 0 =⇒ h́i(k, σ, z, w, θ) < 0, (3.75)

ĥi(k, σ, z, w, θ) > 0 =⇒ h́i(k, σ, z, w, θ) > 0. (3.76)

Proof Choose any i ∈ {1, . . . , nσ} and (k, σ, z, w, θ) ∈ K × S × X̃ × W̃ × Θ̃ such

that (z, w) ∈ M̂(k, σ1:i−1, θ), w is in the interior of W , and ĥj(k, σ, z, w, θ) 6= 0 for all

j ∈ {1, . . . , i − 1}. Note that w in the interior of W implies that (wp − wLp ) > 0 and

(wp − wUp ) < 0. We must show (3.75)–(3.76) in all of the following cases which correspond

to each definition of h́i in Definition 3.5.4.

Case 1: Suppose ∃β 6= 0 and some j < i, such that

ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ), for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying

(z, w) ∈ M̂(k, σ1:i−1, θ, z
d). Correspondingly, h́i(k, σ, z, w, θ) will be given by (3.55)

in Definition 3.5.4. Since (z, w) ∈ M̂(k, σ1:i−1, θ), and hence (z, w) ∈ M̂(k, σ1:i−1, θ, z
d),

we have ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ). To show (3.75), assume ĥi(k, σ, z, w, θ) < 0.

This implies βĥj(k, σ, z, w, θ) < 0. Recall that (z, w) ∈ M̂(k, σ1:i−1, θ) which implies

that σj ĥj(k, σ, z, w, θ) ≤ 0. If ĥj(k, σ, z, w, θ) < 0, then we must have β > 0 and

σj = 1. Otherwise, we must have β < 0 and σj = −1. In both of these situations,

(3.55) gives h́i(k, σ, z, w, θ) = −βσj < 0. Thus, (3.75) holds. To show (3.76), assume

ĥi(k, σ, z, w, θ) > 0. This implies βĥj(k, σ, z, w, θ) > 0. If ĥj(k, σ, z, w, θ) < 0, then we

must have β < 0 and σj = 1. Otherwise, we must have β > 0 and σj = −1. In both of

these situations, (3.55) gives h́i(k, σ, z, w, θ) = −βσj > 0. Hence, (3.76) holds.
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Case 2: Suppose Case 1 does not hold, but ∃α 6= 0 such that

ĥi(k, σ, z, w, θ) = α(wp − wLp ) for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying

(z, w) ∈ M̂(k, σ1:i−1, θ, z
d). Correspondingly, h́i(k, σ, z, w, θ) is given by (3.56) in Defi-

nition 3.5.4. Since (z, w) ∈ M̂(k, σ1:i−1, θ), and hence (z, w) ∈ M̂(k, σ1:i−1, θ, z
d), we have

ĥi(k, σ, z, w, θ) = α(wp − wLp ). To show (3.75), assume ĥi(k, σ, z, w, θ) = α(wp − wLp ) < 0.

Since w is in the interior of W , implying (wp − wLp ) > 0, we must have α < 0,

which gives h́i(k, σ, z, w, θ) = α < 0 as required. To show (3.76), assume

ĥi(k, σ, z, w, θ) = α(wp − wLp ) > 0. This assumption requires α > 0, which leads to

h́i(k, σ, z, w, θ) = α > 0 as required.

Case 3: Suppose Cases 1–2 do not hold, but ∃ρ 6= 0 such that

ĥi(k, σ, z, w, θ) = ρ(wp − wUp ) for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ satisfying

(z, w) ∈ M̂(k, σ1:i−1, θ, z
d). Correspondingly, h́i(k, σ, z, w, θ) is given by (3.57) in Defi-

nition 3.5.4. Since (z, w) ∈ M̂(k, σ1:i−1, θ), and hence (z, w) ∈ M̂(k, σ1:i−1, θ, z
d), we have

ĥi(k, σ, z, w, θ) = ρ(wp − wUp ). To show (3.75), assume ĥi(k, σ, z, w, θ) = ρ(wp − wUp ) < 0.

Since w is in the interior of W , implying (wp − wUp ) < 0, we must have ρ > 0,

which gives h́i(k, σ, z, w, θ) = −ρ < 0 as required. To show (3.76), assume

ĥi(k, σ, z, w, θ) = ρ(wp − wUp ) > 0. This assumption requires ρ < 0. Hence,

h́i(k, σ, z, w, θ) = −ρ > 0 as required.

Case 4: Suppose Cases 1–3 do not hold. This implies that h́i(k, σ, z, w, θ) is given

by (3.58) in Definition 3.5.4. Specifically, we have h́i(k, σ, z, w, θ) = ĥi(k, σ, z, w, θ). Hence,

the implications in (3.75)–(3.76) hold.

Lemma 3.5.11. For any i ∈ {1, . . . , nσ} and (k, σ, z, w, θ) ∈ K × S × X̃ × W̃ × Θ̃ such

that (z, w) ∈ M̂(k, σ1:i−1, θ), w is in the interior of W, and ĥj(k, σ, z, w, θ) 6= 0 for all

104



j ∈ {1, . . . , i− 1}, the following implications hold:

h́i(k, σ, z, w, θ) < 0 =⇒ ĥi(k, σ, z, w, θ) < 0, (3.77)

h́i(k, σ, z, w, θ) > 0 =⇒ ĥi(k, σ, z, w, θ) > 0. (3.78)

Proof Choose any i ∈ {1, . . . , nσ} and (k, σ, z, w, θ) ∈ K × S × X̃ × W̃ × Θ̃ such

that (z, w) ∈ M̂(k, σ1:i−1, θ), w is in the interior of W , and ĥj(k, σ, z, w, θ) 6= 0 for all

j ∈ {1, . . . , i − 1}. Note that w in the interior of W implies that (wp − wLp ) > 0 and

(wp − wUp ) < 0. We must show the implications in (3.77)–(3.78) in all the following cases

which cover all possible definitions of h́i in Definition 3.5.4:

Case 1: Suppose h́i(k, σ, z, w, θ) is given by (3.55). Correspondingly, ∃β 6= 0 and

some j < i, such that ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ), for all (z, w, θ) ∈ X̃ × W̃ × Θ̃

satisfying (z, w) ∈ M̂(k, σ1:i−1, θ, z
d). Since (z, w) ∈ M̂(k, σ1:i−1, θ), and hence

(z, w) ∈ M̂(k, σ1:i−1, θ, z
d), we have ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ) and we must

have σj ĥj(k, σ, z, w, θ) ≤ 0 by definition of M̂(k, σ1:i−1, θ). To show (3.77), assume

h́i(k, σ, z, w, θ) = −βσ̂j < 0. If ĥj(k, σ, z, w, θ) < 0, we must have σj = 1. Hence, with

−βσj < 0, we must have β > 0, which gives ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ) < 0

as desired. Otherwise, ĥj(k, σ, z, w, θ) > 0 and we must have σj = −1 and β < 0,

which gives ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ) < 0 as desired. To show (3.78), assume

h́i(k, σ, z, w, θ) = −βσj > 0. With similar reasoning as above, if ĥj(k, σ, z, w, θ) < 0, then

we have σj = 1 leading to β < 0. Otherwise, we have σj = −1 leading to β > 0. Either

situation leads to ĥi(k, σ, z, w, θ) = βĥj(k, σ, z, w, θ) > 0 as desired.

Case 2: Suppose h́i(k, σ, z, w, θ) is given by (3.56). Correspondingly, ∃α 6= 0

such that ĥi(k, σ, z, w, θ) = α(wp − wLp ) for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ sat-

isfying (z, w) ∈ M̂(k, σ1:i−1, θ, z
d). Since (z, w) ∈ M̂(k, σ1:i−1, θ), and hence

(z, w) ∈ M̂(k, σ1:i−1, θ, z
d), we have ĥi(k, σ, z, w, θ) = α(wp − wLp ). To show (3.77),

assume (3.56) gives h́i(k, σ, z, w, θ) = α < 0. Since (wp − wLp ) > 0, we must have

ĥi(k, σ, z, w, θ) = α(wp − wLp ) < 0 as desired. To show (3.78), assume (3.56) gives
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h́i(k, σ, z, w, θ) = α > 0. In this case, we have ĥi(k, σ, z, w, θ) = α(wp − wLp ) > 0 as

desired.

Case 3: Suppose h́i(k, σ, z, w, θ) is given by (3.57). Correspondingly, ∃ρ 6= 0

such that ĥi(k, σ, z, w, θ) = ρ(wp − wUp ) for all (z, w, θ) ∈ X̃ × W̃ × Θ̃ sat-

isfying (z, w) ∈ M̂(k, σ1:i−1, θ, z
d). Since (z, w) ∈ M̂(k, σ1:i−1, θ), and hence

(z, w) ∈ M̂(k, σ1:i−1, θ, z
d), we have ĥi(k, σ, z, w, θ) = ρ(wp − wUp ). To show (3.77), as-

sume (3.57) gives h́i(k, σ, z, w, θ) = −ρ < 0. Since (wp − wUp ) < 0, we must have

ĥi(k, σ, z, w, θ) = ρ(wp − wUp ) < 0 as desired. To show (3.78), assume (3.57) gives

h́i(k, σ, z, w, θ) = −ρ > 0. In this case, we must have ĥi(k, σ, z, w, θ) = ρ(wp − wUp ) > 0 as

desired.

Case 4: Suppose h́i(k, σ, z, w, θ) is given by (3.58). In this case, we have

h́i(k, σ, z, w, θ) = ĥi(k, σ, z, w, θ). Hence, the implications in (3.77)–(3.78) hold.

Corollary 3.5.2. For any i ∈ {1, . . . , nσ} and (k, σ, z, w, θ) ∈ K × S × X̃ × W̃ × Θ̃ such

that (z, w) ∈ M̂(k, σ1:i−1, θ), w is in the interior of W, and ĥj(k, σ, z, w, θ) 6= 0 for all

j ∈ {1, . . . , i− 1}, the following implications hold:

ĥi(k, σ, z, w, θ) < 0 ⇐⇒ h́i(k, σ, z, w, θ) < 0, (3.79)

ĥi(k, σ, z, w, θ) > 0 ⇐⇒ h́i(k, σ, z, w, θ) > 0. (3.80)

Proof A direct combination of Lemmas 3.5.10 and 3.5.11 gives this result.

Next, Corollary 3.5.2 is used to establish the next Lemma 3.5.12, which is then

used by Lemma 3.5.13 stating that for each θ, ´̀(θ,ω) = ˆ̀(θ,ω) everywhere except on a

set of ω’s which, in order to conclude that Ĺ(θ) = L̂(θ), is shown to be of measure-zero

in Corollary 3.5.3. The latter is used to establish the main result of this section, which is

finally given in Theorem 3.5.2.

Lemma 3.5.12. Choose any (k, z, w, θ) ∈ K × X̃ × W̃ × Θ̃ and let σ̂ ∈ S be the binary

sequence obtained by applying (3.43). If w is in the interior of W and ĥi(k, σ̂, z, w, θ) 6= 0
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for all i ∈ {1, . . . , nσ}, then κ̂(k, z, w, θ) = κ́(k, z, w, θ).

Proof Let (k, z, w, θ) and σ̂ the hypothesis of the lemma. Let σ́ be

the binary sequence obtained by applying (3.60) with (k, z, w, θ). To show that

κ̂(k, z, w, θ) = κ́(k, z, w, θ), it suffices to show that σ̂ = σ́ according to (3.42), (3.44),

(3.59), and (3.61). Since σ̂ satisfies (3.43), it follows that (k, σ̂, z, w, θ) satisfies all of the

hypotheses in Corollary 3.5.2.

To show that σ̂ = σ́, we use induction. To begin, first note that σ̂1:0 = σ́1:0 since

both of σ̂1:0 and σ́1:0 are empty sequences. For induction, choose any i with 0 < i ≤ nσ and

assume that σ̂1:i−1 = σ́1:i−1. By Corollary 3.5.2, ĥi(k, σ̂1:i−1, z, w, θ) and h́i(k, σ̂1:i−1, z, w, θ)

have the same sign. But, since σ̂1:i−1 = σ́1:i−1, ĥi(k, σ̂1:i−1, z, w, θ) and h́i(k, σ́1:i−1, z, w, θ)

must have the same sign. Hence, σ̂1:i = σ́1:i. By induction on i, σ̂ = σ̂1:nσ = σ́1:nσ = σ́.

Lemma 3.5.13. Choose any (ω, θ) ∈ Ω̃ × Θ̃, let û0:K and x̂0:K be the input and state

trajectories of the recursion (3.49)–(3.51), and let ú0:K and x́0:K be the input and state

trajectories of the recursion (3.70)–(3.72). Moreover, let σ̂0:K and σ́0:K be the binary tra-

jectories obtained by applying (3.43) and (3.60), respectively, at each k ∈ K. If wk is in

the interior of W and ĥi(k, σ̂k,1:i−1, x̂k, wk, θ) 6= 0 for all i ∈ {1, . . . , nσ} and k ∈ K, then

´̀(θ,ω) = ˆ̀(θ,ω).

Proof To show that ´̀(θ,ω) = ˆ̀(θ,ω), it is sufficient to show that ûk = úk and

x̂k+1 = x́k+1, ∀k ∈ K. Specifically, this implies that ˆ̀(ω, θ) = ´̀(ω, θ) by (3.52) and (3.73).

To show that ûk = úk and x̂k+1 = x́k+1, ∀k ∈ K, we first show that the following

implication holds for any k ∈ K:

x̂k = x́k =⇒

 ûk = úk

x̂k+1 = x́k+1

 . (3.81)

Assume x̂k = x́k. By Lemma 3.5.12, we immediately have

κ̂(k, x̂k, wk, θ) = κ́(k, x̂k, wk, θ). But, by the assumption, we must have

κ̂(k, x̂k, wk, θ) = κ́(k, x́k, wk, θ). This implies that ûk = úk by (3.50) and (3.71).
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Then, x̂k = x́k and ûk = úk leads to x̂k+1 = x́k+1 by (3.51) and (3.72).

To finish the proof, we now proceed with finite induction over k. Noting that

x̂0 = x́0 = b0, a recursive application of (3.81) shows that ûk = úk and x̂k+1 = x́k+1 for all

k ∈ K.

Corollary 3.5.3. If κ satisfies Condition 3.5.1, then Ĺ(θ) = L(θ) for any θ ∈ Θ̃.

Proof Assume κ satisfies Condition 3.5.1. Choose any θ ∈ Θ̃. By Corollary 3.5.1,

L̂(θ) = L(θ), so it suffices to show that Ĺ(θ) = L̂(θ). Recall that L̂(θ) = E[ˆ̀(θ,ω)] and

Ĺ(θ) = E[´̀(θ,ω)]. Thus, it sufficed to show that ˆ̀(·,ω) and ´̀(·,ω) only differ on the set of

Lebesgue measure zero. To do this, we first construct the sets on which ˆ̀(·,ω) and ´̀(·,ω)

disagree according to Lemma 3.5.13. These sets are given as follows for each k ∈ K and

i ∈ {1, . . . , nσ} where, for each ω ∈ Ω, x̂k(ω, θ) is as defined in (3.51) and σ̂k(ω, θ) denotes

the binary sequence obtained by applying (3.43) with (k, x̂k(ω, θ), wk, θ):

∂kiΩ(θ) ≡ {ω ∈ Ω : ĥi(k, σ̂k,1:i−1(ω, θ), x̂k(ω, θ), wk, θ) = 0}, ∀k,∀i, (3.82)

∂Lk Ω(θ) ≡ {ω ∈ Ω : wk = wL}, (3.83)

∂Uk Ω(θ) ≡ {ω ∈ Ω : wk = wU}. (3.84)

Since κ satisfies Condition 3.5.1, κ̂ satisfies Condition 3.4.1 by Lemma 3.5.3.

By Lemma 3.9.4 (see appendix), this implies that µ(∂kiΩ(θ)) = 0, for all k ∈ K and

i ∈ {1, . . . , nσ}. Moreover, it is easy to see that µ(∂Lk Ω(θ)) = 0 and µ(∂Uk Ω(θ)) = 0 for ev-

ery k ∈ K. By Lemma 3.5.13, ´̀(θ,ω) 6= ˆ̀(θ,ω) is possible only if ω ∈ ∂kiΩ(θ), ω ∈ ∂Lk Ω(θ),

or ω ∈ ∂Uk Ω(θ), for some k ∈ K. Since these sets are all of Lebesgue measure zero, it follows

that Ĺ(θ) = L̂(θ). But, since L̂(θ) = L(θ) by Lemma 3.5.1, we must have Ĺ(θ) = L(θ).

Theorem 3.5.2. If κ satisfies Condition 3.5.1, then L is continuous on Θ̃. If κ satisfies

Conditions 3.5.2–3.5.3 also, then L ∈ C1(Θ̃,R); i.e., κ is smooth-in-expectation.

Proof Theorem 3.5.1 gives continuity of L. With Lemma 3.5.9, a direct application of
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Theorem 3.4.1 gives Ĺ ∈ C1(Θ̃,R). Hence, with Corollary 3.5.3, we have L ∈ C1(Θ̃,R).

3.6 Continuous Differentiability of Chance Constraints Pk

In this section, we show that the results from the previous section concerning the

continuous differentiability of the expected-value cost function L can be applied to analyze

continuous differentiability of chance constraints Pk as given by (3.10). Even though dif-

ferentiability of probability functions is a known subject in the literature, the function Pk

differs from probability functions treated in the literature by the fact that Pk(θ) is subject

to the recursion (3.3)–(3.5) which involves the decision rule κ satisfying Definition 3.4.1.

Accordingly, the results presented here are a new contribution.

In order to apply the results from the previous sections, we use the fact that Pk(θ)

can be equivalently expressed as an expected value of an indicator function. To show this

clearly, consider the following definition.

Definition 3.6.1. Let κ be a decision rule satisfying Definition 3.4.1. Let Š ≡ S×{−1, 1}ng .

For each k ∈ K and σ̌ ∈ Š, let ǧ : K × Š × X̃ × W̃ × Θ̃→ Rng be defined as follows, for all

(z, w, θ) ∈ X̃ × W̃ × Θ̃:

ǧ(k, σ̌, z, w, θ) ≡ g(k, κσ̌1:nh
(k, z, w, θ), z, w, θ). (3.85)

Moreover, for each q ∈ {1, . . . , nh +ng}, k ∈ K and σ̌ ∈ Š, let ȟq : K×Š × X̃ × W̃ × Θ̃→ R

be defined as follows, for all (z, w, θ) ∈ X̃ × W̃ × Θ̃:

(a) If q > nh, then define

ȟq(k, σ̌, z, w, θ) ≡ ǧq−nh(k, σ̌, z, w, θ). (3.86)

(b) Otherwise, define

ȟq(k, σ̌, z, w, θ) ≡ hq(k, σ̌1:nh , z, w, θ). (3.87)
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Moreover, define κ̌ : K × X̃ × W̃ × Θ̃→ Ũ × {−1, 1}ng by

σ̌q =

 1 if ȟq(k, σ̌1:q−1, z, w, θ) ≤ 0

−1 otherwise

 , ∀q ∈ {1, . . . , nσ̌}, (3.88)

κ̌(k, z, w, θ) ≡ (κσ̌1:nh
(k, z, w, θ), σ̌k,nh+1:nσ̌). (3.89)

Remark 3.6.1. Since κ satisfies Definition 3.4.1, it can be easily shown that Definition 3.6.1

satisfies Definition 3.4.1. In particular, the functions ȟq satisfy the same continuous differ-

entiability requirement on hi in Definition 3.4.1. This is true because, for every k ∈ K,

zd ∈ X̃d, and σ̌ ∈ Š, the function ǧ(k, σ̌, (·, zd), ·, ·) is continuously differentiable on

X̃c × W̃ × Θ̃ by Assumption 3.3.2, Definition 3.4.1, and by the fact that ǧ is defined

as the composition of g and κσ̌1:nh
and the composition of two continuously differentiable

functions is also continuously differentiable.

To write Pk(θ) as an expected value of an indicator function, consider the following

recursion, which is similar to (3.3)–(3.5):

x0(ω, θ) ≡ b0, (3.90)

ǔk(ω, θ) ≡ κ̌(k, xk(ω, θ), wk, θ), (3.91)

xk+1(ω, θ) ≡ f(k, ǔk,1:nu(ω, θ), xk(ω, θ), wk, θ). (3.92)

Moreover, define the indicator function ψ(ω, θ) for each (ω, θ) ∈ Ω̃× Θ̃ by:

ψ(ω, θ) ≡

 1, if ǔk,nu+j(ω, θ) = 1,∀j ∈ {1, . . . , ng}

0, otherwise

 . (3.93)

According to (3.85)–(3.92), ǔk,nu+j(ω, θ) = 1 for j ∈ {1, . . . , ng} indicates that

g(k, uk(ω, θ), xk(ω, θ), wk, θ) ≤ 0, as per (3.7). Thus, noting that ǔk,1:nu(ω, θ) = uk(ω, θ),

we must have the following, by (3.7), (3.10) and the fact that a chance constraint can be
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written as an expected value of an indicator function:

Pk(θ) = P [τk(ω, θ) ≤ 0] (3.94)

= P [g(k, uk(ω, θ), xk(ω, θ), wk, θ) ≤ 0] (3.95)

= E [ψ(ω, θ)] . (3.96)

Now that Pk(θ) is expressed as an expected-value, we next prove the following result

for continuous differentiability of Pk(θ).

Theorem 3.6.1. If κ̌ satisfies Condition 3.5.1, then Pk is continuous on Θ̃. If κ̌ satisfies

Conditions 3.5.2–3.5.3 also, then Pk ∈ C1(Θ̃,R).

Proof Theorem 3.6.1 holds by Theorem 3.5.2 because 1) κ̌ satisfies Definition 3.4.1,

2) Pk is an expected value of ψ which is constant, and thus continuously differentiable

on Ω̃ × Θ̃, for each fixed k ∈ K, ǔdk = (udk, ǔk,nu:nu+ng), and zd ∈ X̃d (this is a similar

requirement for `S in Assumption 3.3.2).

Remark 3.6.2. Note that applying Conditions 3.5.1–3.5.3 to κ̌ involves checking the deriva-

tives
∂ȟq
∂w (k, σ̌, z, w, θ), which involve the derivatives ∂ǧi

∂w (k, σ̌, z, w, θ) as given by

∂ǧi
∂w

(k, σ̌, z, w, θ) =
∂gi
∂w

+
∂gi

∂κσ̌1:nh

∂κσ̌1:nh

∂w
, (3.97)

where the derivatives of gi are evaluate at (k, κσ̌(k, z, w, θ), z, w, θ) and ∂κσ̌
∂w at (k, z, w, θ).

3.7 An Illustrative Example: Optimization of an Inventory

System

This section considers an illustrative integrated design and operation problem for

a two-product inventory system that is operated daily over a year. We first present an

MSP model of the form (3.1), then develop a decision rule approximation and show that
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it is differentiable using the results from §3.5. Finally, we solve the smooth decision rule

approximation using a gradient-based approach and compare with gradient-free algorithms.

3.7.1 MSP Model for the Inventory Example

We consider the optimization of the inventory system illustrated in Figure 3.3. The

Figure 3.3: A simple two-product inventory system

system consists of two processes, Process 1 and Process 2, which are run on a daily basis for

a year (i.e., K = 364) to produce two products, Prod.1 (produced by Process 1 only) and

Prod.2 (produced by both processes). These products are stored in two tanks with capacities

CSt1 and CSt2 , from which uncertain daily demands Dk,1 and Dk,2 are supplied. The demands

Dk,i are non-stationary and are modeled by a time-varying deterministic sequence perturbed

by random variables wk = (ξk, λk), as described in detail in the appendix:

Dk,i = Ddet
k,i + ξk,i + λk,i, ∀i ∈ {1, 2}. (3.98)

The MSP model for this system has mixed-integer operational decisions

uk = (sk,1, sk,2, P
u
k,1, P

u
k,2, P

d
k,1, P

d
k,2, yk,1, yk,2) taking values in Ũ ≡ R6 × {0, 1}2, system

states xk = (xck,1, x
c
k,2, x

d
k,1, x

d
k,2, x

d
k,1, x

d
k,2) taking values in X̃ ≡ R2 × Z4, and design deci-

sions θ = (CSt1 , CSt2 ) taking values in Θ ≡ [θL, θU ], with θL = (10−3, 10−3) and θL = (20, 20).

The components of uk, xk, and θ are defined in Table 3.1. The MSP we consider is as fol-

lows, where j is used for indexing processes and i for indexing products, and the values of
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the cost coefficients and other constants are given in Table 3.2:

min
θ∈Θ

xk∈L∞(Ω,X̃)

uk∈L∞(Ω,Ũ)

βTCst + E

 364∑
k=0

cTy yk(ω)− cTs sk(ω) + cTuP
u
k (ω)

+cTd P
d
k (ω) + cTxx

c
k+1(ω)


 (3.99)

subject to :

xck+1,i(ω) = xck,i(ω)− sk,i(ω) +
2∑
j=1

(µi,jyk,j(ω)CPrj )− P dk,i(ω), ∀i (3.100)

xdk+1,j(ω) = yk,j(ω)(xdk,j(ω) + 1), ∀j (3.101)

xdk+1,j(ω) = (1− yk,j(ω))(xdk,j(ω) + 1), ∀j (3.102)

xc0,i(ω) = 0.75Csti , ∀i (3.103)

xd0,j(ω) = M j , ∀j (3.104)

xd0,j(ω) = 0, ∀j (3.105)

sk,i(ω) ≤ xck,i(ω), ∀i (3.106)

Dk,i(ω) = sk,i(ω) + P uk,i(ω), ∀i (3.107)

0 ≤ xck+1,i(ω) ≤ CSti , ∀i (3.108)

(1 ≤ xdk,j(ω) ≤M j − 1) =⇒ (yk,j(ω) = 0), ∀j (3.109)

(1 ≤ xdk,j(ω) ≤M j − 1) =⇒ (yk,j(ω) = 1), ∀j (3.110)

sk,i(ω), P uk,i(ω), P dk,i(ω) ≥ 0, ∀i (3.111)

yk, sk, P
u
k , P

d
k nonanticipative (3.112)

∀k ∈ {0, . . . ,K},∀ω ∈ Ω

The first term in the objective function is the storage investment cost, where βi is

the cost of a unit of storage capacity Csti . The second term is the expected value of the sum

of daily operational costs,

`S(k, uk, xk, wk, θ) = cTy yk − cTs sk + cTuP
u
k + cTd P

d
k + cTxx

c
k+1, (3.113)
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Table 3.1: Description of operational decisions uk, system states xk, random variables wk,
and design decisions θ for the MSP in (3.99)–(3.112)

Operational decisions uk Description

yk,j On/off status of process j on day k (binary)

sk,i Amount of product i sold in day k (continuous)

P uk,i Unmet demand for product i in day k (continuous)

P dk,i Amount of product i dumped in day k (continuous)

System states xk Description

xck,i Storage level for product i at the beginning of day k (contin-
uous)

xdk,j Number of days prior to day k that process j has been running
including the day it was last turned on (integer)

xdk,j Number of days prior to day k that process j has been off
including the day it was last turned off (integer)

Random variables wk Description

ξk,i and λk,i Random perturbations on demand for product i in day k

Design decisions θ Description

CSti Capacity of storage tank for product i

Table 3.2: Values for cost coefficients and other constants in (3.99)–(3.112)

Constant cy,j cs,i cu,i cd,i cx,i βi M j M j CPrj µ1,j µ2,j

i or j = 1 12 3 60 0.3 0.06 50 2 1 1 4 0

i or j = 2 14.4 6 120 0.6 0.12 50 1 1 1 1.33 4
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where cy,j is the cost for running processes j and cs,i, cu,i, cd,i, and cx,i are, respectively,

the selling price, the cost penalty for unmet demand, the cost of dumping, and the storage

cost per unit of product i. Note that xck+1 is used in `S as a short-hand for the right hand

side of (3.100). Thus, `S depends on xk as in (3.1). Constraints (3.100)–(3.102) specify how

the system state is updated and define the function f in (3.1). Constraint (3.100) states

that the amount (storage level) of product i at the end of the day depends on the amount

xck,i available at beginning of that day, the amount sk,i sold, the amount produced during

the day (the summation term), and the amount dumped. In the summation term, which

is non-zero if yk,j = 1 (process j is run), µi,j denotes the amount of product i produced

for each unit of capacity CPrj of process j. We assume that both processes run at their

full capacity or not at all. Thus, dumping excess product is permitted with an associated

cost penalty to avoid overfilling the storage tanks. We also assume that new products

from Processes 1 and 2 become available only at the end of the day, so demands must be

supplied entirely from storage xck,i (constraint (3.106)). Consequently, there may be unmet

demands (constraint (3.107)), which are associated with large penalty costs. Constraint

(3.108) requires the storage level to remain between zero and the storage capacity CSti . To

avoid frequent and costly process start-ups and shutdowns, xdk,j and xdk,j (see Table 3.1) are

recorded and updated according to (3.101) and (3.102). Once process j is turned on, it is

allowed to be shut down only if it has reached its minimum uptime (constraint (3.110)),

and once it is shut down, it is allowed to be turned on only if it has reach its minimum

downtime (constraint (3.109)). Note that the logical constraints (3.109)–(3.110) admit a

big-M-type reformulation into integer linear constraints. However, this reformulation is not

performed here for convenience of notation. Finally, constraints (3.103)–(3.105) specify the

initial conditions, where xd0,j and xd0,j are chosen so that y0,j is free.

Note that all constraints in the MSP above are required to hold robustly. Strictly to

match the form of the general MSP (3.1), constraints (3.106)–(3.111) should be written as

chance constraints. However, it is clearly desirable to enforce them robustly because they

encode some aspects of the problem physics, such as the impossibility of filling a storage
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tank beyond its capacity. In general, the methods developed in this chapter do not address

robust constraints. However, we will show in the next section that it is possible in this case

to formulate an effective decision rule that satisfies (3.106)–(3.111) robustly.

3.7.2 Decision Rule Approximation

The decision rule approximation of (3.99)–(3.112) is obtained by replacing uk with

the decision rule κ presented in Fig.’s 3.4–3.5, which is parametrized by parameters γ. When

γ and θ = (CSt1 , CSt2 ) are fixed, the rule makes operational decisions uk = (sk, P
u
k , P

d
k , yk) in

each stage k while also enforcing the robust constraints (3.106)–(3.111). Since the binary

decisions yk affect how some of the continuous decisions sk, P
u
k , and P dk are made (Fig. 3.5),

the rule decides yk first (Fig. 3.4). In relation to Definition 3.4.1, the expressions in the �

blocks in both Fig. 3.4 and Fig. 3.5 are for checking the event functions hi ≤ 0 as in (3.12).

For each process j ∈ {1, 2}, the binary decision yk,j is made first using Fig. 3.4.

Since process j has a minimum up-time M j and minimum down-time M j , the rule first

determines if yk,j is fixed by the constraints (3.109)–(3.110). For example, suppose xdk,j = 0,

which means that process j is not running. If xdk,j < M j , then process j has not reached

its minimum down-time and cannot be started (yk,j = 0). Otherwise, the process can be

started again. In all cases where yk,j is not fixed by (3.109)–(3.110), the rule determines

yk,j using the following threshold function parametrized by γ:

bk,j = γj,1 + γj,2(xck,1 −Dk,1) + γj,3(xck,2 −Dk,2) + ηk,j , (3.114)

where ηk,j is a small random perturbation that is added to randomize the rule. If bk,j ≤ 0,

then process j is turned on (yk,j = 1). Otherwise, the process is turned off (yk,j = 0).

Next, continuous decisions sk,i, P
u
k,i, and P dk,i are made using Fig. 3.5. These de-

cisions are made such that constraint (3.106)–(3.108) are robustly satisfied. The strat-

egy is to first sell as much product as possible without violating constraint (3.106). If

xck,i ≤ Dk,i, then all of the stored product i is sold (sk,i = xck,i) and there is an unmet de-
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xdk,j ≤ 0

xdk,j ≥M j xdk,j ≥M j

bk,j = γj,1 + γj,2(xck,1 −Dk,1) + γj,3(xck,2 −Dk,2) + ηk,j

bk,j ≤ 0

yk,j = 0 yk,j = 1yk,j = 1 yk,j = 0

no

σ
(j)
k,1 = −1

yes

σ
(j)
k,1 = 1

no

σ
(j)
k,2 = −1

yes

σ
(j)
k,2 = 1

no

σ
(j)
k,2 = −1

yes

σ
(j)
k,2 = 1

no

σ
(j)
k,3 = −1

yes

σ
(j)
k,3 = 1

Figure 3.4: Decision rule making binary operational decisions yk,j .

xck,i ≤ Dk,i

P uk,i = 0

sk,i = Dk,i

P uk,i = Dk,i − xck,i
sk,i = xck,i

x́ck,i = xck,i − sk,i +
2∑

j=1

yk,j(µi,jC
Pr
j )

x́ck,i ≤ CSt
i

P dk,i = x́ck,i − CSti P dk,i = 0

no

σ
(i)
k,4 = −1

yes

σ
(i)
k,4 = 1

no

σ
(i)
k,5 = −1

yes

σ
(i)
k,5 = 1

Figure 3.5: Decision rule making continuous decisions P uk,i, sk,i, and P dk,i.

mand P uk,i = Dk,i−xck,i. Otherwise, the demand is fully supplied (sk,i = Dk,i) and P uk,i = 0.

It is easy to see that this strategy ensures that (3.107) is satisfied. Next, the rule decides

whether or not it is necessary to dump excess products at the end of the day to enforce

constraint (3.108). This decision is made based on x́ck,i, which denotes the storage level

at the end of the day assuming no dumping. If x́ck,i ≤ CSti , then no dumping is needed

(P dk,i = 0). Otherwise, P dk,i = x́ck,i−CSti . This ensures that (3.108) will be satisfied at k+ 1.

The decision rule approximation obtained by replacing uk in (3.99)–(3.112) with the

decision rule in Fig.’s 3.4–3.5 can be cast as the following simulation-optimization problem:
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min
θ∈Θ,γ∈Γ

C(θ) + L(θ, γ) , (3.115)

where C(θ) = βTCst and L(θ, γ) = E[`(ω, (θ, γ))], with `(ω, (θ, γ)) evaluated through

simulation. For any fixed ω, γ, and θ = (CSt1 , CSt2 ), a simulation consists of recursively

evaluating f as defined in (3.100) and the decision rule in Fig.’s 3.4–3.5 to obtain the

system states xk(ω, (θ, γ)) and operational decisions uk(ω, (θ, γ)) that are used to compute

`(ω, (θ, γ)) as follows:

`(ω, (θ, γ)) =
364∑
k=0

`S(k, uk(ω, (θ, γ)), xk(ω, (θ, γ)), wk, (θ, γ)). (3.116)

Note that in relation to the general simulation-optimization problem (3.11), problem (3.115)

does not have chance constraints since all constraints in (3.99)–(3.112) are robustly en-

forced by the rule in Fig.’s 3.4–3.5. In the next subsection, we show that the rule in Fig.’s

3.4–3.5 makes (3.115)is smooth-in-expectation, allowing its solution using gradient-based

approaches.

3.7.3 Verification of Smoothness of the Decision Rule Approximation

In this subsection, we show that the decision rule in Fig.’s 3.4–3.5 satisfies Defini-

tion 3.4.1 and is smooth-in-expectation. Fig.’s 3.4–3.5 obey Definition 3.4.1 with the event

functions hi in (3.12) defined as the expressions inside the � blocks. We denote the event

functions in Fig.’s 3.4–3.5 using the indexing scheme h
(j)
1:3 (Fig. 3.4) and h

(i)
4:5 (Fig. 3.5) with

i, j ∈ {1, 2} corresponding to the values σ
(j)
k,1:3 and σ

(i)
k,4:5 shown in the figures. To relate

this indexing scheme to Definition 3.4.1, we can define hq = h
(r)
n where q = 2(n − 1) + r,

r ∈ {1, 2}, and n ∈ {1, · · ·, 5}. For clarity, the event functions h
(j)
1:3 and h

(i)
4:5 are given ex-

plicitly in Table 3.3. The functions κσ are too numerous to write explicitly, but are evident

from Fig.’s 3.4–3.5.

We first argue that the decision rule defined by Fig.’s 3.4–3.5 satisfies Defini-

tion 3.4.1. First, note that Definition 3.4.1 allows each hq to depend on k, xk, wk, (θ, γ), and
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Table 3.3: Event functions corresponding to Fig.’s 3.4–3.5

Figure Event functions h
(j)
1:3 and h

(i)
4:5

Fig. 3.4

h
(j)
1 = xdk,j

h
(j)
2 =

{
M j − xdk,j if σ

(j)
k,1 = 1

M j − xdk,j otherwise

}
h

(j)
3 = γj,1 + γj,2(xck,1 −Dk,1) + γj,3(xck,2 −Dk,2) + ηk,j

Fig. 3.5

h
(i)
4 = xck,i −Dk,i

h
(i)
5 =


2∑
j=1

yk,j(µi,jC
Pr
j )− CSti if σ

(i)
k,4 = 1

xck,i − CSti −Dk,i +
2∑
j=1

yk,j(µi,jC
Pr
j ) otherwise


σ1:q−1. Every hq defined in Table 3.3 depends only on these quantities with the exception

of h
(i)
5 , which also depends on yk and hence on the input vector uk. However, with more

cumbersome notation, the dependence of h
(i)
5 on yk could be replaced with dependence on

σ
(i)
k,1:3, which uniquely determines yk via Fig.3.4. Therefore, this requirement is satisfied.

Second, it is easy to see from Table 3.3 that all of the h
(j)
1:3 and h

(i)
4:5 are continuously differ-

entiable w.r.t. xck, wk = (ξk, λk, ηk), θ = (CSt1 , CSt2 ), and γ, for any fixed k, xdk ≡ (xdk, x
d
k),

and σk ≡ (σ
(1)
k,1:5, σ

(2)
k,1:5), as required by Definition 3.4.1.

To show that the decision rule defined by Fig.’s 3.4–3.5 is smooth-in-expectation,

we apply Conditions 3.5.1–3.5.3 to the event functions in Table 3.3. Specifically, we show

that Conditions 3.5.1–3.5.3 hold provided that the following assumptions hold for every

(θ, γ) ∈ Θ̃× Γ̃:

CSti >

2∑
j=1

µi,jC
Pr
j , ∀i ∈ {1, 2}, (3.117)

γj,2 6= 0 or γj,3 6= 0, ∀j ∈ {1, 2}. (3.118)

Assumption (3.117) means that the maximum amount of product i that can be produced in

a single day is smaller than the maximum storage capacity. Assumption (3.118) means that

the two coefficients γj,2 and γj,3 cannot be both zero. Recalling that wk = (ξk, λk, ηk) and
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that Dk,i has a non-trivial dependence on both ξk,i and λk,i via (3.98), assumption (3.118)

ensures that the event function determining yk,j in Fig. 3.4 (i.e., h
(j)
3 in Table 3.3) is a

nontrivial function of wk and xk. Showing that Conditions 3.5.1–3.5.3 hold under (3.117)–

(3.118) verifies that L is smooth at each θ for which (3.117)–(3.118) hold. Unfortunately,

(3.117)–(3.118) rule out smoothness of L on the whole (nθ + nγ)-dimensional space of

decisions (θ, γ). Specifically, (3.117) and (3.118) describe (nθ + nγ − 1) and (nθ + nγ − 2)-

dimensional surfaces of potential discontinuities, respectively, in the (nθ + nγ)-dimensional

space, which is, however, unlikely to cause major problems for a gradient-based solver.

Moreover, the number of discontinuities described by (3.117)–(3.118) is significantly much

smaller relative to the number of discontinuities in the case where Conditions 3.5.1–3.5.3

do not hold at all.

For simplicity of notation in the arguments that follow, we use θ to refer to (θ, γ).

Moreover, for any choice of q corresponding to (n, r) with n ∈ {1, · · · , 5} and r ∈ {1, 2} and

any choice of k, σk, and xdk, we refer to hq as follows, where h
(r)
n are as given in Table 3.3:

hq(k, σk,1:q−1, (·, xdk), ·, ·) = h(r)
n (k, σ

(r)
k,n−1, (·, (x

d
k, x

d
k)), ·, ·). (3.119)

To verify Condition 3.5.1, choose any q corresponding to (n, r) with n ∈ {1, · · · , 5}

and r ∈ {1, 2}, and choose any k, σk, and xdk. We must show that at least one of Con-

ditions 3.5.1.1–3.5.1.2 holds for hq(k, σk,1:q−1, (·, xdk), ·, ·). First, suppose n ∈ {1, 2}. From

Table 3.3 and using (3.119), it is easy to see that hq(k, σk,1:q−1, (·, xdk), ·, ·) satisfies Condi-

tion 3.5.1.2 because, with the integer state xdk fixed, hq(k, σk,1:q−1, (·, xdk), ·, ·) is constant.

Next, suppose n ∈ {3, 4, 5}. Consider the case with n = 5 and σ
(r)
k,4 = 1. Recalling that

yk can be determined from knowledge of σ
(r)
k,1:3, then yk in h

(r)
5 is fixed since σk is fixed.

Condition 3.5.1.1 holds trivially in this case because, as per (3.117), it is impossible to

have hq(k, σk,1:q−1, (·, xdk), ·, ·) = 0 at any point (xck, wk, θ). Finally, with assumption (3.118)

ensuring that h
(r)
3 is a nontrivial function of wk, all other cases are the cases in which

hq(k, σk,1:q−1, (·, xdk), ·, ·) is a non-trivial function of wk (e.g., hq depends either on ξk,i and
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λk,i through Dk,i or directly on ηk,i). This justifies that Condition 3.5.1.2 holds for these

cases.

To verify Condition 3.5.2, choose any q corresponding to (n, r) with n ∈ {1, · · · , 5}

and r ∈ {1, 2}, any v corresponding to (m, s) with m ∈ {1, · · · , 5} and s ∈ {1, 2} such that

v 6= q, and choose any k, σk, and xdk. We must show that at least one of Conditions 3.5.2.1–

3.5.2.3 holds for hq(k, σk,1:q−1, (·, xdk), ·, ·) and hv(k, σk,1:v−1, (·, xdk), ·, ·). First, suppose that

either n ∈ {1, 2} or m ∈ {1, 2}. From Table 3.3 and using (3.119), it is easy to see that

Condition 3.5.2.2 holds because, with the integer state xdk fixed, hq(k, σk,1:q−1, (·, xdk), ·, ·)

or hv(k, σk,1:v−1, (·, xdk), ·, ·) is constant. Next, suppose that n,m ∈ {3, 4, 5}. Consider

the following cases: Case 1: n = 5 and σ
(r)
k,4 = 1 or m = 5 and σ

(s)
k,4 = 1. In this

case, Condition 3.5.2.1 holds trivially because, as per (3.117), it is impossible to have

hq(k, σk,1:q−1, (·, xdk), ·, ·) = hv(k, σk,1:v−1, (·, xdk), ·, ·) = 0 at any point (xck, wk, θ). Case 2:

r = s with either n = 5 and m = 4 or n = 4 and m = 5. Since r = s, we have σ
(r)
k,4 = σ

(s)
k,4.

Condition 3.5.2.1 holds trivially in this case too because, as per (3.117), it is impossible

to have hq(k, σk,1:q−1, (·, xdk), ·, ·) = hv(k, σk,1:v−1, (·, xdk), ·, ·) = 0 at any point (xck, wk, θ).

With assumption (3.118) ensuring that h
(r)
3 is a nontrivial function of wk, all other cases

are cases in which hq(k, σk,1:q−1, (·, xdk), ·, ·) is a non-trivial function of at least one element

of wk that is different from all other elements of wk of which hv(k, σk,1:v−1, (·, xdk), ·, ·) is a

non-trivial function. This means that Condition 3.5.1.1 holds because the following holds at

all points (xck, wk, θ), where the arguments (k, σk,1:q−1, (·, xdk), ·, ·) and (k, σk,1:v−1, (·, xdk), ·, ·)

are omitted for brevity of notation:

rank

 ∂hq
∂w

∂hv
∂w

 = rank

 ∂hq
∂ξ

∂hq
∂λ

∂hq
∂η

∂hv
∂ξ

∂hv
∂λ

∂hv
∂η

 = 2. (3.120)

To elaborate, first consider n = m = 3 and r 6= s. In this case hq(k, σk,1:q−1, (·, xdk), ·, ·)

depends on ηk,r, but hv(k, σk,1:v−1, (·, xdk), ·, ·) depends ηk,s and it does not depend on

ηk,r. Second, consider n = m = 4 and r 6= s. In this case, through Dk,r and

Dk,s, hq(k, σk,1:q−1, (·, xdk), ·, ·) depends on both ξk,r and λk,r, but hv(k, σk,1:v−1, (·, xdk), ·, ·)
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depends on ξk,s and λk,s and it does not depend on ξk,r and λk,r. Third, consider

(n,m) ∈ {(3, 4), (4, 3), (3, 5), (5, 3)}. In this case, we can have two situations. In the first

situation, we have that hq(k, σk,1:q−1, (·, xdk), ·, ·) depends on both ξk,r and λk,r through Dk,r,

but hv(k, σk,1:v−1, (·, xdk), ·, ·) depends on ηk,s and not on ξk,r and λk,r. The reverse situa-

tion where r and s are switched is similar. Lastly, consider (n,m) ∈ {(4, 5), (5, 4)} with

r 6= s. In this case, hq(k, σk,1:q−1, (·, xdk), ·, ·) depends on both ξk,r and λk,r through Dk,r,

but hv(k, σk,1:v−1, (·, xdk), ·, ·) depends on ξk,s and λk,s through Dk,s and it does not depend

on ξk,r and λk,r.

Finally, to verify Condition 3.5.3, choose any q corresponding to (n, r) with

n ∈ {1, · · · , 5} and r ∈ {1, 2}, and choose any p ∈ {1, . . . , nw}, k, σk, and xdk. We

must show that at least one of Conditions 3.5.2.1–3.5.3.4 holds for hq(k, σk,1:q−1, (·, xdk), ·, ·).

First, consider the case with n ∈ {1, 2}. From Table 3.3 and using (3.119), it is easy

to see that hq(k, σk,1:q−1, (·, xdk), ·, ·) is constant because the integer state xdk is fixed.

Thus, hq(k, σk,1:q−1, (·, xdk), ·, ·) satisfies Condition 3.5.3.2. Next, consider the case with

n ∈ {3, 4, 5}. If n = 5 and σ
(r)
k,4 = 1, then Condition 3.5.3.1 holds trivially because, as

per (3.117), it is impossible to have hq(k, σk,1:q−1, (·, xdk), ·, ·) = 0 at any point (xck, wk, θ).

With assumption (3.118) ensuring that h
(r)
3 is a non-trivial function of wk, all other cases

are cases in which hq(k, σk,1:q−1, (·, xdk), ·, ·) is a nontrivial function of at least two elements

of wk. Specifically, with (3.118), hq(k, σk,1:q−1, (·, xdk), ·, ·) depends non-trivially on ξk,r and

λk,r through Dk,r. This means that Condition 3.5.1.1 holds because the following holds at

all points (xck, wk, θ), where the arguments (k, σk,1:q−1, (·, xdk), ·, ·) are omitted for brevity of

notation:

rank

 ∂hq
∂w

eTp

 = rank

 ∂hq
∂ξ

∂hq
∂λ

∂hq
∂η

eTp

 = 2. (3.121)

Although Conditions 3.5.1–3.5.3 are shown to hold with assumptions (3.117)–

(3.118), Fig. 3.6 shows that L is smooth at every point where (3.117)–(3.118) hold. This

happens because, in this case, the rule in Fig.’s 3.4–3.5 obeys Conditions 3.5.1–3.5.3 as
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Figure 3.6: Cost ` with ω fixed (left column) and cost L estimated with average of ` over
105 random ω’s (right column) vs γ1,1(top row) and CSt2 (bottom row)

shown above. Nonetheless, as we show in the next section, smoothness of L enable us to

solve problem (3.115) with gradient-based approaches that are much more efficient than

gradient-free approaches.

3.7.4 Optimization Results

In this section, we demonstrate that exploiting differentiability of L is advanta-

geous for solving (3.115). We consider (θ, γ) = (CSt1 , CSt2 , γ1,1, γ1,2, γ1,3, γ2,1, γ2,2, γ2,3)

with feasible set Θ × Γ = [θL, θU ] × [γL, γU ], where θL = (5.33, 4), θU = (20, 20),

γL = (−10, 10,−25,−25,−10,−5) and γU = (9, 30,−5,−7, 10, 16). To determine these

bounds, a one sample approximation of problem (3.115), which is discontinuous, was solved

on an unrestricted space of decisions (θ, γ) (i.e., the bounds were made very large) using a

particle swarm optimization algorithm (PSO). Then, an appropriate vector of positive con-

stants was used to perturb the PSO solution to obtained the specified bounds. Specifically,

(θL, γL) was obtained by a perturbation on the left and (θU , γU ) was obtained by a per-

turbation on the right. Clearly, the way these bounds were constructed is non-restrictive.

Importantly, note that these bounds enforce (3.117) and (3.118) for j = 1, making the orig-

inal problem (3.115) smooth on the whole space of decisions (θ, γ) defined by these bounds
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except at points where (3.118) with j = 2 does not hold, which is very unlikely to happen

during the optimization process.

Even though problem (3.115) has only 8 decision variables, and thus might

seem simple, the MSP model (3.99)–(3.112) requires mixed-integer operational decisions

uk = (yk, sk, P
u
k , P

d
k ) and xk = (xck, x

d
k, x

d
k) at each stage k ∈ {0, · · · , 364} and for each

scenario ω. In fact, a single scenario ω gives an a MILP that takes Gurobi 7.5.1 more than

16h3 to solve, although constraints (3.109)–(3.110) were excluded. In contrast, we solve

(3.115) using an implementation of a stochastic trust-region algorithm adapted from [127].

Our primary motivation for considering the stochastic trust-region approach is that it relies

on the assumption that the problem is at least continuously differentiable, a property that

is established for L in §3.7.3 above. However, note that we implemented the algorithm in

[127] with some modifications to suit our problem. Specifically, a rectangular trust-region

intersected with feasible region Θ× Γ was used, and this was done both to enforce bounds

on (θ, γ) and to simplify generation of candidate designs (θ, γ) for local model construction.

For the linear model, a 210−4
III fractional factorial design was used, and for the quadratic

model, a central composite design was used. Let Ns denote the number of samples ωs of ω

used in the approximation of L(θ, γ) as follows:

L(θ, γ) ≈
Ns∑
s=1

`(ωs, (θ, γ)). (3.122)

Another important modification that had to be made is on how Ns is computed because

the suggestions in [127] could not efficiently handle the deleterious effects of the noise in

the approximation (3.122) on the algorithm. Through trial-and-error, we found that using

Ns = 6 for model construction and Ns = 100 for performing the ratio-comparison and

sufficient-reduction tests was adequate when the algorithm is in the inner-loop. On the

other hand, when the algorithm is in the outer-loop, Ns was computed as suggested in

[127], but imposing Ns < 30 for model construction and Ns < 300 for the ratio-comparison

3Dell Precision T3600, 3.0 GHz Intel Xeon, 8GB RAM, Windows 7, MATLAB R2015a
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Table 3.4: Considered modifications for parameters in Table 2 in [127]

n0 nd ∆0 ∆̃ η0 η1 γ1 γ2 αk
Ns Ns 3.15 1 0.05 1.5 0.5 2 0.5× 0.98k

and sufficient-reduction tests. Furthermore, the values of the remaining parameters for the

algorithm, as described in [127] and given in Table 2 there, were tuned for our example and

are given in Table 3.4. Finally, the algorithm was terminated when the trust region radius

has shrunk to 0.05, which is small enough to justify that the algorithm was not making

significant progress.

Recall that we consider the minimization of the expected-value L(θ, γ). The stochas-

tic trust region algorithm implementation we consider, as referred to as STRONG in [127],

is compared with the particle swarm optimization (PSO) code particleswarm and the ge-

netic algorithm (GA) code ga in MATLAB R2015a with default settings for both. The

PSO and GA algorithms we consider are, in our experience, unstable when the objective

function they are dealing with is stochastic. Therefore, Ns and the samples ωs used in the

approximation (3.122) were fixed before each of their runs so that the objective function is

deterministic. Fig. 3.8 shows the optimization results obtained by PSO and GA for different

values of Ns. For each Ns, 100 runs were considered, where a different batch of ωs was used

for each run. The histograms show the percentage of solutions (θmin, γmin) found versus

their corresponding expected cost L(θmin, γmin) which is approximated with (3.122) using

Ns = 3× 103. From the histograms, it is easy to see that both PSO and GA find scattered

solutions with Ns = 1 as indicated by the different bars in the histograms. As Ns is in-

creased, the number of bars becomes smaller and smaller towards one obviously dominating

bar. In the PSO case, the dominating bar contains the value L(θmin, γmin) = −1535, where

(θmin, γmin) = (9.3, 7.5,−9.04, 11.29,−5.68,−24.96,−0.28, 7.42) is the best value of (θ, γ)

found. However, for both PSO and GA the dominating bar contains different solutions but

with similar costs L(θmin, γmin) ∈ [−1535 − 1510]. Notably, with Ns = 30, PSO reliably

finds these solutions 97% of the time and GA 70% of the time. This behavior indicates

that for PSO to be qualified as solving the expected-value minimization problem, at least
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Figure 3.7: Percentage of solutions found by STRONG versus the corresponding expected
costs (in dollars)

Ns = 30 is required. This is because, with this Ns, varying the batches of ωs does not

have any effect on the range of the cost corresponding to PSO solutions. Consequently,

the performance of PSO with Ns = 30 is considered as a benchmark for comparison with

STRONG.

On the other hand, STRONG was initiated at 100 initial guesses and L(θmin, γmin)

is also approximated with 3 × 103 samples. As shown in Fig. 3.7, approximately 65% of

the time STRONG terminated at solutions with cost values in the same range as those in

the dominating bar in the PSO and GA histograms with Ns = 30. However, STRONG

also found other solutions which were graphically confirmed to be local minima. This is

expected because STRONG is a local solver. More importantly, STRONG achieves a 20×

computational speed-up over PSO and 33× over GA. This is measured in terms of the

number of function evaluations since the latter dominates the total computational time

spent by the solvers until termination. Specifically, PSO uses an average of 4 × 105 func-

tion evaluations, GA uses an average of 6.7 × 105, and STRONG uses only an average of

2 × 104 which translates to an average CPU time of 7 mins4. For this rather small exam-

ple we considered, this showcases that even though STRONG is not optimally tuned and

needs significant improvements, it outperforms the much more mature PSO (≈ 2.3h) and

GA(≈ 3.5h) algorithms. This demonstrates the great advantages of exploiting differentia-

bility of decision-rule approximation problems, allowing optimization with gradient-based

methods which are expected to perform even much better in higher dimensional problems

in which derivative-free approaches are highly inefficient.

4Dell Precision T3600, 3.0 GHz Intel Xeon, 8GB RAM, Windows 7, MATLAB R2015a
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3.8 Conclusions

In this chapter, a novel approach was presented for efficiently solving very large

multistage stochastic programs (MSPs) with mixed-integer recourse decisions. Such MSPs

arise as very effective models for formulating the problem of integrated design and opera-

tion of manufacturing and energy systems that must adapt to highly dynamic and uncertain

operating conditions. However, such MSPs are notoriously difficult to solve by any other

means currently available in the literature. For our first contribution, a new general class

of mixed-integer decision rules was proposed for deriving accurate decision-rule approxima-

tion (DRA) of such MSPs. However, the standard sample average approximation (SAA)

of the DRA problem is highly discontinuous. In this case, reformulating the DRA as a

standard mathematical program is intractable for the type of MPS we consider because it

requires reintroducing very many binary variables (i.e., for each scenario and stage). In con-

trast, this chapter proposes formulating the DRA as a simulation-optimization (DRA-SO)

problem. Note that the SAA of this DRA-SO is still highly discontinuous. However, our

second contribution provides a novel set of sufficient conditions (imposed on the proposed

class of decisions rules) that guarantees that the true expected value over all possible sce-

narios is smooth. Moreover, our third contribution provides an extension that allows the

application of these conditions to analyze smoothness of chance constraints in the DRA-SO

problem. The significance of these conditions is that when they hold, the DRA-SO problem

is smooth, enabling its solution using gradient-based optimization algorithms which are far

more efficient than the commonly used gradient-free approaches. Furthermore, our fourth

contribution provides a randomization strategy that ensures that the sufficient conditions

can be made to hold for all decision rules of the proposed class. Therefore, these conditions

can be applied more broadly towards the efficient solution of general MSP problems. The

application of these contributions was demonstrated on a MSP model of an integrated de-

sign and operation example problem for an inventory system. For this example problem,

significant improvements in the optimization results were obtained with a stochastic trust-
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region algorithm (which relies on smoothness of the problem) relative to two state-of-the-art

gradient-free approaches. Overall, this example problem illustrates that the contributions of

this chapter address the limitations of solving the MSPs using the standard scenario-based

approach. Moreover, it illustrates that the contributions address the well-known limitations

of gradient-free approaches which are commonly used to solve the highly discontinuous SAA

of the DRA-SO problem. However, although the results presented in this chapter show huge

potential, the proposed class of mixed-integer decision rules does not cover highly advanced

decision rules, such as model predictive control. Such decision rules are expected to provide

more accurate DRAs for MSPs since they are based on the solution of an auxiliary opti-

mization problem to approximate mixed-integer recourse decisions. Our future work will

explore the application of the results developed in this chapter in cases where an advanced

decision rule is used to approximate MSPs. Since such cases are closely related to multi-

level stochastic programs that also arise in smart manufacturing and energy systems, the

aim of our future work will be to help develop a tractable solution approach for multilevel

stochastic programs with mixed-integer recourse decisions.
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3.9 Appendix

3.9.1 Proof of Theorem 3.4.1

The proof of Theorem 3.4.1 consists of applying Theorem 2.4.1 in Chapter 2. How-

ever, the latter applies to expected value functions subject to discrete time stochastic hybrid

systems (DTSHS), which differ from the recursion (3.3)–(3.6) used here in some technical

details. The first difference between the DTSHS considered in Chapter 2 and the recursion

(3.3)–(3.6) is that the functions f and `S in (3.3)–(3.6) depend on an input uk, which is

determined by a decision rule κ satisfying Definition 3.4.1. In contrast, the functions f

and `S in Chapter 2 do not depend on an input, but instead depend directly on a binary

sequence σ that is analogous to the σ used in Definition 3.4.1 here. The second technical

difference is that the formulation in Chapter 2 assumes that the set X̃ × W̃ × Θ̃, on which

the functions hi, f and `S are defined, is open. But, this does not hold here specifically

because X̃d ⊂ Zndx , and hence X̃ = X̃c × X̃d, is not open. Consequently, in order to ap-

ply Theorem 2.4.1 in Chapter 2, we must translate (3.3)–(3.6) into a DTSHS of the form

analyzed in Chapter 2. To do this, we first establish Definition 3.9.1 in which we begin by

extending X̃ to a new open set ˇ̃X ⊃ X̃. Then, we define new functions ȟi, f̌ and ˇ̀
S on

the open set ˇ̃X × W̃ × Θ̃. These definitions embed the decision rule κ, and therefore no

longer depend on an input uk. This allows us to construct a DTSHS of the form analyzed

in Chapter 2 with a corresponding expected value function Ľ. The defined DTSHS enables

a direct application of Theorem 2.4.1 in Chapter 2 to conclude that Ľ is continuously dif-

ferentiable provided that the new event functions ȟi satisfy Conditions 3.4.1–3.4.3. Next,

we establish Lemma 3.9.1 in which we show that Ľ(θ) = L(θ) for any θ. This allows us to

directly establish continuous differentiabiliy of L through Ľ.

Definition 3.9.1. For any xd ∈ X̃d, let Bδ(x
d) be the ndx-dimensional open ball of radius

δ > 0 around xd. Choose any δ > 0 such that

Bδ(x)
⋂
Bδ(x) = ∅, ∀x, x ∈ X̃d, (3.123)
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and define

ˇ̃X ≡ X̃c ×
⋃
x∈X̃d

Bδ(x). (3.124)

Moreover, define ȟi : K × S × ˇ̃X × W̃ × Θ̃ → R, f̌ : K × S × ˇ̃X × W̃ × Θ̃ → ˇ̃X, and

ˇ̀
S : K×S × ˇ̃X × W̃ × Θ̃→ R, for all (k, σ, (xc, x∗), w, θ) ∈ K× S × ˇ̃X × W̃ × Θ̃ as follows,

where xd is the unique element of X̃d such that x∗ ∈ Bδ(xd):

ȟi(k, σ, (x
c, x∗), w, θ) ≡ hi(k, σ, (xc, xd), w, θ), (3.125)

f̌(k, σ, (xc, x∗), w, θ) ≡ f(k, κσ(k, (xc, xd), w, θ), (xc, xd), w, θ), (3.126)

ˇ̀
S(k, σ, (xc, x∗), w, θ) ≡ `S(k, κσ(k, (xc, xd), w, θ), (xc, xd), w, θ). (3.127)

Furthermore, define the following recursion, where x̌0 = x0 = b0:

σ̌k,i =

 1 if ȟi(k, σ̌k,1:i−1, x̌k, wk, θ) ≤ 0

−1 otherwise

 , ∀i ∈ {1, . . . , nσ}, (3.128)

x̌k+1 = f̌(k, σ̌k, x̌k, wk, θ). (3.129)

For any given (ω, θ) ∈ Ω̃ × Θ̃, define the solutions of (3.128)–(3.129) at stage k by

σ̌k(ω, θ) ≡ σ̌k and x̌k(ω, θ) ≡ x̌k. Finally, define the total cost of a trajectory of (3.128)–

(3.129) by

ˇ̀(ω, θ) ≡
K∑
k=0

ˇ̀
S(k, σ̌k(ω, θ), x̌k(ω, θ), wk, θ), (3.130)

and the expected cost associated with (3.128)–(3.130) by

Ľ(θ) ≡ E[ˇ̀(ω, θ)]. (3.131)

The dynamic system (3.128)–(3.130) has exactly the same structure as the DTSHS
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analyzed in Chapter 2. Moreover, (3.128)–(3.130) is equivalent to (3.3)–(3.6) in the sense

of the following result.

Lemma 3.9.1. For any θ ∈ Θ̃, Ľ(θ) = L(θ).

Proof Choose any (ω, θ) ∈ Ω̃ × Θ̃. Using κ as defined in (3.12)–(3.13), let σ0:K ,

u0:K , and x0:K be the trajectories of the recursion (3.3)–(3.5), and let σ̌0:K and x̌0:K be

the trajectories of the recursion (3.128)–(3.129). It is sufficient to show that σk = σ̌k and

xk+1 = x̌k+1, ∀k ∈ K. If this holds, then, ∀k ∈ K,

ˇ̀
S(k, σ̌k, x̌k, wk, θ) = ˇ̀

S(k, σk, xk, wk, θ) (3.132)

= `S(k, κσk(k, xk, wk, θ), xk, wk, θ) (3.133)

= `S(k, uk, xk, wk, θ). (3.134)

But, (3.134) implies directly that ˇ̀(ω, θ) = `(ω, θ) by (3.130) and (3.6), which then implies

that Ľ(θ) = E[`(ω, θ)] = E[`(ω, θ)] = L(θ) since the choice of (ω, θ) was arbitrary.

To show that σk = σ̌k and xk+1 = x̌k+1, ∀k ∈ K, we first show that the following

implication holds for any k ∈ K:

xk = x̌k =⇒

 σk = σ̌k

xk+1 = x̌k+1

 . (3.135)

Assume xk = x̌k. It is trivial to see that the following implication holds for any

i ∈ {1, . . . , nσ}:

ȟi(k, σ̌k,1:i−1, x̌k, wk, θ) = hi(k, σk,1:i−1, xk, wk, θ) =⇒ σ̌k,i = σk,i. (3.136)

We show by induction that

ȟi(k, σ̌k,1:i−1, x̌k, wk, θ) = hi(k, σk,1:i−1, xk, wk, θ), ∀i. (3.137)
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By the assumption that xk = x̌k, we have the following, by (3.125):

ȟi(k, σ̌k,1:i−1, x̌k, wk, θ) = hi(k, σ̌k,1:i−1, xk, wk, θ), ∀i. (3.138)

Thus, showing (3.137) is equivalent to showing that

hi(k, σ̌k,1:i−1, xk, wk, θ) = hi(k, σk,1:i−1, xk, wk, θ), ∀i. (3.139)

Because h1 does not depend on σk or σ̌k, (3.139) holds trivially for i = 1. For induc-

tion, choose an arbitrary i ≥ 1 and assume that (3.139) holds for all j ≤ i. By (3.136),

this implies directly that σk,1:i = σ̌k,1:i. But, the latter together with xk = x̌k, leads to

hi+1(k, σ̌k,1:i, x̌k, wk, θ) = hi+1(k, σk,1:i, xk, wk, θ), showing that (3.139) holds for all i by

induction. Correspondingly, (3.137) holds as desired.

To show (3.135), we proceed by combining (3.137) with (3.136) and noting that

this gives σk,i = σ̌k,i for all i ∈ {1, . . . , nσ}, meaning that σk = σ̌k. With this and by the

assumption that xk = x̌k, we have

f̌(k, σ̌k, x̌k, wk, θ) = f̌(k, σk, xk, wk, θ) (3.140)

= f(k, κσk(k, xk, wk, θ), xk, wk, θ) (3.141)

= f(k, uk, xk, wk, θ). (3.142)

But, (3.142) implies directly that x̌k+1 = xk+1, by (3.129) and (3.5). Therefore, (3.135)

holds.

To finish the proof, we now proceed with induction over k. Noting that

x̌0 = x0 = b0 ∈ X̃, a recursive application of (3.135) shows that σk = σ̌k and xk+1 = x̌k+1

for all k ∈ K.

Lemma 3.9.2. For each fixed k ∈ K and σ ∈ S, the functions f̌(k, σ, ·, ·, ·), ˇ̀
S(k, σ, ·, ·, ·),

and ȟi(k, σ, ·, ·, ·) for all i ∈ {1, . . . , nσ}, are continuously differentiable on the extended set

ˇ̃X × W̃ × Θ̃.
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Proof Choose any k ∈ K, σ ∈ S, i ∈ {1, . . . , nσ}, and ((xc, x∗), w, θ) ∈ ˇ̃X × W̃ × Θ̃.

By (3.124), x∗ ∈ Bδ(x
d) for some xd ∈ X̃d. The function ȟi(k, σ, (·, x∗), ·, ·) is contin-

uously differentiable at (xc, w, θ) by (3.125) and Definition 3.4.1. Moreover, the func-

tions f̌(k, σ, (·, x∗), ·, ·) and ˇ̀
S(k, σ, (·, x∗), ·, ·) are continuously differentiable at (xc, w, θ)

by (3.126)–(3.127), Assumption 3.3.2, and by the fact that the composition of two

continuously differentiable functions is also continuously differentiable. On the other

hand, (3.125)–(3.126) imply that the functions f̌(k, σ, (xc, ·), w, θ), ˇ̀
S(k, σ, (xc, ·), w, θ),

and ȟi(k, σ, (x
c, ·), w, θ) are constant on Bδ(x

d), and hence in the neighborhood of

x∗, and are therefore trivially continuously differentiable at x∗. Thus, by Theorem

6.2 in [120], f̌(k, σ, ·, ·, ·), ˇ̀
S(k, σ, ·, ·, ·), and ȟi(k, σ, ·, ·, ·) are continuously differentiable

at ((xc, x∗), w, θ), and are therefore continuously differentiable on ˇ̃X × W̃ × Θ̃ since

((xc, x∗), w, θ) was arbitrary chosen from ˇ̃X × W̃ × Θ̃.

Recall that the interest here is to prove continuous differentiabiliy of L under Con-

ditions 3.4.1–3.4.3. To easily prove this result, we next establish Lemma 3.9.3 which allows

us to apply Theorem 2.4.1 in Chapter 2 to show continuous differentiabiliy of Ľ under

Conditions 3.4.1–3.4.3. To establish Lemma 3.9.3, consider the following definition.

Definition 3.9.2. For every k ∈ K, σ ∈ S, and θ ∈ Θ̃, define the sets

M̌(k, σ, θ) ≡ {(z, w) ∈ ˇ̃X ×W : σiȟi(k, σ, z, w, θ) ≤ 0, ∀i}. (3.143)

∂iM̌(k, σ, θ) ≡ {(z, w) ∈ M̌(k, σ, θ) : ȟi(k, σ, z, w, θ) = 0}. (3.144)

∂ijM̌(k, σ, θ) ≡

(z, w) ∈ M̌(k, σ, θ) :
ȟi(k, σ, z, w, θ) = 0

ȟj(k, σ, z, w, θ) = 0

 . (3.145)

Lemma 3.9.3. If the functions hi satisfy Conditions 3.4.1–3.4.3, then Conditions 3.4.1–

3.4.3 are also satisfied by the functions ȟi with the sets M(k, σ, θ) replaced by the sets

M̌(k, σ, θ).

Proof Assume the functions hi satisfy Conditions 3.4.1–3.4.3. To begin, first note
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that, for any k ∈ K, σ ∈ S, i ∈ {1, . . . , nσ}, and zd ∈ X̃d, (3.125) implies that

ȟi(k, σ, (·, z∗), ·, ·) = hi(k, σ, (·, zd), ·, ·), ∀z∗ ∈ Bδ(zd). (3.146)

Since W̃ is open, this implies that

∂ȟi
∂w

(k, σ, (·, z∗), ·, ·) =
∂hi
∂w

(k, σ, (·, zd), ·, ·), ∀z∗ ∈ Bδ(zd). (3.147)

Next, we show that the following implication holds for any k ∈ K, σ ∈ S, and θ ∈ Θ, where

zd is the unique element of X̃d such that z∗ ∈ Bδ(zd):

((zc, z∗), w) ∈ M̌(k, σ, θ) =⇒ ((zc, zd), w) ∈M(k, σ, θ). (3.148)

Choose any ((zc, z∗), w) ∈ M̌(k, σ, θ) and let zd ∈ X̃d be such that z∗ ∈ Bδ(z
d). By

Definition 3.9.2, this implies that σiȟi(k, σ, (z
c, z∗), w, θ) ≤ 0 for all i. By the definition of

ȟi in (3.125), this implies that σihi(k, σ, (z
c, zd), w, θ) ≤ 0 for all i. By Definition 3.4.3, this

implies that ((zc, zd), w) ∈M(k, σ, θ) as desired.

To show that the functions ȟi satisfy Condition 3.4.1, choose any i ∈ {1, . . . , nσ},

k ∈ K, σ ∈ S, and θ ∈ Θ. We must show that

∂ȟi
∂w

(k, σ, (zc, z∗), w, θ) 6= 0, ∀((zc, z∗), w) ∈ ∂iM̌(k, σ, θ). (3.149)

Choose any ((zc, z∗), w) ∈ ∂iM̌(k, σ, θ). By (3.144), it follows that ȟi(k, σ, (z
c, z∗), w, θ) = 0.

But, since z∗ ∈ Bδ(z
d) for some zd ∈ X̃d, we must have hi(k, σ, (z

c, zd), w, θ) = 0 by

(3.146). Moreover, since ((zc, z∗), w) ∈ ∂iM̌(k, σ, θ) implies that ((zc, z∗), w) ∈ M̌(k, σ, θ),

(3.148) implies that ((zc, zd), w) ∈ M(k, σ, θ). Thus, hi(k, σ, (z
c, zd), w, θ) = 0 implies

that ((zc, zd), w) ∈ ∂iM(k, σ, θ). Consequently, by the hypothesis that hi satisfies Con-

dition 3.4.1, we must have ∂hi
∂w (k, σ, (zc, zd), w, θ) 6= 0. Hence, by (3.147), we must have

∂ȟi
∂w (k, σ, (zc, z∗), w, θ) 6= 0. Therefore, since the choice ((zc, z∗), w) ∈ ∂iM̌(k, σ, θ) was
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arbitrary, (3.149) holds.

To show that the functions ȟi satisfy Condition 3.4.2, choose any i, j ∈ {1, . . . , nσ}

with i 6= j, k ∈ K, σ ∈ S, and θ ∈ Θ. We must show that

rank

 ∂ȟi
∂w (k, σ, (zc, z∗), w, θ)

∂ȟj
∂w (k, σ, (zc, z∗), w, θ)

 = 2, ∀((zc, z∗), w) ∈ ∂ijM̌(k, σ, θ). (3.150)

Choose any ((zc, z∗), w) ∈ ∂ijM̌(k, σ, θ). By (3.145), we have

ȟi(k, σ, (z
c, z∗), w, θ) = ȟj(k, σ, (z

c, z∗), w, θ) = 0. But, since z∗ ∈ Bδ(z
d) for some

zd ∈ X̃d, we must have hi(k, σ, (z
c, zd), w, θ) = hj(k, σ, (z

c, zd), w, θ) = 0 by (3.146).

Moreover, since ((zc, z∗), w) ∈ M̌(k, σ, θ), (3.148) implies that ((zc, zd), w) ∈ M(k, σ, θ).

Thus, ((zc, zd), w) ∈ ∂ijM(k, σ, θ) by (3.148). Consequently, by the hypothesis that hi and

hj satisfy Condition 3.4.2, we must have rank

[
∂hi
∂w

(k,σ,(zc,zd),w,θ)
∂hj
∂w

(k,σ,(zc,zd),w,θ)

]
= 2. Hence, by (3.147),

we have rank

[
∂ȟi
∂w

(k,σ,(zc,z∗),w,θ)
∂ȟj
∂w

(k,σ,(zc,z∗),w,θ)

]
= 2. Since the choice ((zc, z∗), w) ∈ ∂ijM̌(k, σ, θ) was

arbitrary, (3.150) holds.

Lastly, to show that the functions ȟi satisfy Condition 3.4.3, choose any

i ∈ {1, . . . , nσ}, k ∈ K, σ ∈ S, θ ∈ Θ̃, and p ∈ {1, . . . , nw}, and let ep denote the unit

vector with the 1 in the pth position. We must show that the following holds, for all

((zc, z∗), w) ∈ ∂iM̌(k, σ, θ) with wp = wLp or wp = wUp :

rank

∂ȟi∂w (k, σ, (zc, z∗), w, θ)

eTp

 = 2. (3.151)

Choose any ((zc, z∗), w) ∈ ∂iM̌(k, σ, θ). By (3.144), we have ȟi(k, σ, (z
c, z∗), w, θ) = 0. But,

since z∗ ∈ Bδ(zd) for some zd ∈ X̃d, we must have hi(k, σ, (x
c, xd), w, θ) = 0 by (3.125).

Moreover, since ((zc, z∗), w) ∈ M̌(k, σ, θ), (3.148) implies that ((zc, zd), w) ∈ M(k, σ, θ).

Thus, ((zc, zd), w) ∈ ∂iM(k, σ, θ). Consequently, by the hypothesis that hi satisfies Con-

dition 3.4.3, we must have rank

[
∂hi
∂w

(k,σ,(zc,zd),w,θ)

eTp

]
= 2. Hence, by (3.147), we have
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rank

[
∂ȟi
∂w

(k,σ,(zc,z∗),w,θ)

eTp

]
= 2. Therefore, since the choice ((zc, z∗), w) ∈ ∂iM̌(k, σ, θ) was

arbitrary, (3.151) holds.

Finally, we provide the proof of Theorem 3.4.1, which we re-state here for clarity.

Theorem 3.9.1. If κ satisfies Condition 3.4.1, then L is continuous on Θ̃. If Conditions

3.4.2–3.4.3 also hold, then L ∈ C1(Θ̃,R).

Proof By Lemma 3.9.1, it is sufficient to show that Ľ ∈ C1(Θ̃,R). For this, Theorem

2.4.1 from Chapter 2 will be applied. Note that the latter applies to the hybrid system in

(3.128)–(3.130) and requires the functions ȟi(k, σ, ·, ·, ·), f̌(k, σ, ·, ·, ·) and ˇ̀
S(k, σ, ·, ·, ·) to be

continuously differentiable on the open set ˇ̃X × W̃ × Θ̃ for each fixed k ∈ K and σ ∈ S.

Under these requirements and Assumption 3.3.1, Theorem 2.4.1 in Chapter 2 says that

Ľ ∈ C1(Θ̃,R) provided that Conditions 3.4.1–3.4.3 are satisfied with hi replaced by ȟi and

the sets M(k, σ, θ) replaced by the sets M̌(k, σ, θ). Since all of these requirements are

satisfied by Lemmas 3.9.2–3.9.3, Ľ ∈ C1(Θ̃,R).

3.9.2 A Supplemental Result Used to Prove Corollary 3.5.3 in §3.5

The main result of this sub-section is Lemma 3.9.4 below. This result is important

because it is needed to justify the conclusion of Corollary 3.5.3. However, Lemma 3.9.4

is given here for its relevance to the results from the previous sub-section. To state

Lemma 3.9.4, we first give the following definition.

Using the definition of κ in (3.12)–(3.13), let xk(ω, θ) be as defined in (3.3)–(3.5),

and let σk(ω, θ) denote the solution of (3.12) for a given (ω, θ).

Definition 3.9.3. For every k ∈ K, i ∈ {1, . . . , nσ}, and θ ∈ Θ̃, define the sets ∂kiΩ(θ) as

follows:

∂kiΩ(θ) ≡ {ω ∈ Ω : hi(k, σk,1:i−1(ω, θ), xk(ω, θ), wk, θ) = 0}. (3.152)

Lemma 3.9.4. If the functions hi satisfy Condition 3.4.1, then the Lebesgue measure µ of

the set ∂kiΩ(θ) is zero (i.e., µ(∂kiΩ(θ)) = 0), for all k ∈ K, i ∈ {1, . . . , nσ}, and θ ∈ Θ̃.
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Proof For this proof, Lemma 2.3.3 in Chapter 2 will be applied. However, it cannot

be applied directly because the sets ∂kiΩ(θ) correspond to the dynamic system (3.3)–(3.5),

but Lemma 2.3.3 in Chapter 2 applies to the sets defined for the hybrid system in (3.128)–

(3.129). Therefore, we first define sets corresponding to (3.128)–(3.129).

For every k ∈ K, i ∈ {1, . . . , nσ}, and θ ∈ Θ̃, define the following set, where σ̌k(ω, θ)

and x̌k(ω, θ) denote the solutions of (3.128)–(3.129) for a given (ω), respectively:

∂kiΩ̌(θ) ≡ {ω ∈ Ω : ȟi(k, σ̌k,1:i−1(ω, θ), x̌k(ω, θ), wk, θ) = 0}. (3.153)

Furthermore, for any (ω, θ) ∈ Ω̃ × Θ̃, k ∈ K, and σ ∈ SK+1, let x̌dlk (σ,ω, θ) denote the

solution xk resulting from applying the recursion in (3.129) with σ fixed (i.e., (3.128) is not

used) up to k. For every θ ∈ Θ̃, and σ ∈ SK+1, define the set Ω̌dl(σ, θ) as follows:

Ω̌dl(σ, θ) ≡ {ω ∈ Ω : σk,iȟi(k, σk,1:i−1, x̌
dl
k (σ,ω, θ), wk, θ) ≤ 0, ∀k, ∀i}, (3.154)

and define the set ∂kiΩ̌
dl(σ, θ) as follows, for very k ∈ K and i ∈ {1, . . . , nσ}:

∂kiΩ̌
dl(σ, θ) ≡ {ω ∈ Ω̌dl(σ, θ) : ȟi(k, σk,1:i−1, x̌

dl
k (σ,ω, θ), wk, θ) = 0}. (3.155)

Moreover, define the following set for very k ∈ K and i ∈ {1, . . . , nσ}:

∂kiΩ̌
dl(θ) ≡

⋃
σ∈SK+1

∂kiΩ̌
dl(σ, θ). (3.156)

Since the functions ȟi satisfy Condition 3.4.1 by Lemma 3.9.3, applying Lemmas 2.3.3 and

2.4.1 in Chapter 2 shows that µ(∂kiΩ̌
dl(σ, θ)) = 0 for all θ ∈ Θ̃, i ∈ {1, . . . , nσ}, k ∈ K, and

σ ∈ SK+1. Hence, by (3.156), µ(∂kiΩ̌
dl(θ)) = 0 for all θ ∈ Θ̃, i ∈ {1, . . . , nσ}, and k ∈ K.

Next, we show that

∂kiΩ̌(θ) ⊂ ∂kiΩ̌dl(θ), ∀i ∈ {1, . . . , nσ}, ∀k ∈ K, ∀θ ∈ Θ̃. (3.157)
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Choose any k ∈ K, i ∈ {1, . . . , nσ}, θ ∈ Θ̃, and ω ∈ ∂kiΩ̌(θ). By defini-

tion, ȟi(k, σ̌k,1:i−1(ω, θ), x̌k(ω, θ), wk, θ) = 0. To show (3.157), we need to show that

ω ∈ ∂kiΩ̌dl(θ). By the definition of ∂kiΩ̌
dl(θ) in (3.155), we must show that ∃σ ∈ SK+1

such that the following holds:

ȟi(k, σk,1:i−1, x̌
dl
k (σ,ω, θ), wk, θ) = 0, (3.158)

σk,j ȟj(k, σk,1:i−1, x̌
dl
k (σ,ω, θ), wk, θ) ≤ 0, ∀k, j. (3.159)

For the chosen (ω, θ), let x̌0:K(ω, θ) and σ̌0:K(ω, θ) denote, respectively,

the entire trajectory of of the recursion (3.128)–(3.129). By setting

σ = σ̌0:K(ω, θ), it can be easily verified that x̌dlk (σ,ω, θ) = x̌k(ω, θ). Therefore,

ȟi(k, σ̌k,1:i−1(ω, θ), x̌k(ω, θ), wk, θ) = ȟi(k, σk,1:i−1, x̌
dl
k (σ,ω, θ), wk, θ) = 0. This shows

(3.158). Moreover, (3.159) holds by (3.129).

Since µ(∂kiΩ̌
dl(θ)) = 0 for all θ ∈ Θ̃, i ∈ {1, . . . , nσ}, and k ∈ K, (3.157) implies

that µ(∂kiΩ̌(θ)) = 0 for all θ ∈ Θ̃, i ∈ {1, . . . , nσ}, and k ∈ K. Moreover, from the proof

of Lemma 3.9.1, we have shown that σk(ω, θ) = σ̌k(ω, θ) and xk(ω, θ) = x̌k(ω, θ) for all

k ∈ K and any (ω, θ) ∈ Ω̃ × Θ̃. This is important because then (3.125) gives directly that

ȟi(k, σ̌k,1:i−1(ω, θ), x̌k(ω, θ), wk, θ) = hi(k, σk,1:i−1(ω, θ), xk(ω, θ), wk, θ). This implies that

∂kiΩ̌(θ) = ∂kiΩ(θ). Since µ(∂kiΩ̌(θ)) = 0, it follows that µ(∂kiΩ(θ)) = 0.

3.9.3 Supplemental Material for §3.7: Demand Profile Generation

This section provides details on how the product demand profiles given by (3.98) in

§3.7 were synthesized.

The yearly profiles for product demand Dk,i consists of a deterministic part Ddet
k,i

and two random components ξk,i and λk,i as follows, where ξk,1 and λk,1 are generated from

a truncated normal distribution with mean 0 and standard deviation 0.0564, and ξk,2 and
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λk,2 from a truncated normal distribution with mean 0 and standard deviation 0.0571:

Dk,i = Ddet
k,i + ξk,i + λk,i. (3.160)

The deterministic part Ddet
k,i is given by

Ddet
k,i = Dl

k,i +Ds
k,i +Dm

k,i, (3.161)

where Dl
k,i represents a linear trend (increase/decrease), Ds

k,i is a periodic component rep-

resenting a seasonal trend, and Dm
k,i is a periodic component representing a monthly trend.

These are given by

Dl
k,i = ai + bi

k

K − 1
, (3.162)

Ds
k,i =

∣∣∣∣rsi sin

(
r̂si + ŕsiπ

k

K − 1

)∣∣∣∣ , (3.163)

Dm
k,i =

∣∣∣∣rmi sin

(
r̂mi + ŕmi π

k

K − 1

)∣∣∣∣ , (3.164)

where ai, bi, r
s
i , r̂

s
i , ŕ

s
i , r

m
i , r̂mi , and ŕmi are constants whose values are given in Table 3.5.

A sample of demand profiles Dk,i is given in Fig. 3.9.

Table 3.5: Constants ai, bi, r
s
i , r̂

s
i , ŕ

s
i , r

m
i , r̂mi , and ŕmi used in (3.162)–(3.164)

Constants ai bi rsi r̂si ŕsi rmi r̂mi ŕmi
i = 1 0.5 2 1 0 2 0 20 12

i = 2 1.5 -1.5 2 π/2 1 0 40 12

k

0 100 200 300

D
k
,1

0

1

2

3

k

0 100 200 300

D
k
,2

1

2

3

4

Figure 3.9: A sample of demand profiles Dk,1 (left) and Dk,2 (right)
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Chapter 4

Conclusions and Future Work

4.1 Concluding Remarks

The work in this dissertation provided novel and rigorous theoretical results that

enable the use of effective optimization algorithms to solve complex optimization problems

called integrated design and operation under uncertainty. Such problems were considered in

the interest of addressing the design of flexible energy and manufacturing systems. Flexible

systems are critical in advancing the application of smart manufacturing and energy tech-

nologies and were defined as systems that are able to make discrete and continuous changes

in their operations in order to optimally react to the uncertain fluctuations in their operating

environments over short-time scales. The integrated design and operation problem under

uncertainty results because designing flexible systems requires considering these operational

details and uncertainty in the early design stage of the system. This makes the integrated

problem highly complex because the operational details involve mixed-integer operational

decisions that must made over many operational time periods (e.g., hundreds or thousands)

and under huge uncertainties. Unfortunately, these features make standard scenario-based

mathematical programing formulations of such an integrated problem highly intractable.

Tractable mathematical programming formulations are usually achieved using major sim-

plifications of the operational details and uncertainty. Moreover, standard simulation-based
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optimization formulations are usually highly discontinuous due to mixed-integer operational

decisions, leading to their solutions using inefficient gradient-free approaches. These sim-

plifications and inefficiencies often lead to sub-optimal system designs.

In this dissertation, we developed novel strategies that address these issues. This was

done for two representative models for the type of integrated design and operation problems

considered. Specifically, Chapter 2 addressed the issue of discontinuities in a representative

simulation-optimization (SO) model and Chapter 3 developed a highly tractable solution

approach for a representative mathematical programming model, namely a general nonlinear

multistage stochastic program (MSP) model. In relation to existing solution approaches for

these models, this dissertation did not assume simplifications of operational details for the

MSP model. Moreover, this dissertation did not use gradient-free approaches for the SO

problem. Instead, we developed novel theoretical results that guarantee that the SO model

is free of discontinuities, allowing use of gradient-based approaches which achieve major

improvements in both the computational time and quality of system designs.

Chapter 2 considered an SO model representative of SO models usually used for

the optimal sizing of microgrid energy systems that are operated using a type of decision

rule (DR) called energy management policy (EMP) and under uncertainty in power de-

mands and renewable energy resources. In this model, the integrated design and operation

problem was formulated as a minimization problem that seeks to determine a microgrid

system design that simultaneously minimizes the investment cost and the expected opera-

tional cost that is determined through stochastic time-series simulations of the system over

its lifetime. Note that this SO model is extremely scalable in the number of operational

time periods and uncertainty scenarios, both of which are necessary for modeling opera-

tional details over the lifetime of the system. This scalability is due to the fact that the

operational details are evaluated by the simulation through the embedded EMP. The EMP

is a DR whose primary responsibility is to determine mixed-integer operational decisions

in each operational time period and for every simulated uncertainty scenario. Thus, the

SO model takes a decision-rule-embedded simulation-optimization (DR-SO) formulation.
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Since the EMP is a discontinuous DR (i.e., its output include integer decisions), the DR-SO

formulation considered is inevitably highly discontinuous with the commonly used sample

average approximation. This leads to its solution using gradient-free algorithms which are

well-known to be computationally inefficient with no guarantees of finding an optimal de-

sign. The main contributions to address this issue were two sets of sufficient conditions

imposed solely on the EMP rule to guarantee continuous differentiability of the expected

cost, despite its sample average approximation being highly discontinuous. Continuous

differentiability under these conditions was shown through rigorous mathematical proofs.

Moreover, we demonstrated the verification of these two sets on representative EMPs. We

found that these conditions are non-restrictive and thus more likely to hold for many EMPs

of interest in applications. Notably, although the two sets of conditions are independent,

we found that the first set is much easier to verify. Importantly, these conditions allow use

of gradient-based approaches to solve the DR-SO problem more efficiently relative to stan-

dard gradient-free approaches. Through illustrative examples of microgrid system design

and capacity expansion planning, we showed that a custom gradient-based algorithm that

was not even optimized outperformed state-of-the-art gradient-free algorithms.

Chapter 3 considered a general nonlinear state-space multistage stochastic program

(MSP) model for the integrated design and operation problem. Recall that, for energy and

manufacturing systems of interest in this dissertation, the integrated design and operation

problem contains mixed-integer operational decisions which must be made over many oper-

ational time periods and under huge uncertainties. Thus, the MSP formulation considered

is characterized by very many stages (e.g., hundreds or thousands), resulting in a huge

number of mixed-integer decisions, each of which is a function of the uncertainty. Thus, the

standard scenario-based approximation of this MSP becomes highly intractable. However,

we introduced a new type of decision rules (DRs), referred to as smooth-in-expectation, that

leads to highly efficient solutions of such MSPs. To develop this type of DRs, we first pro-

posed a general class of mixed-integer DRs that provides a framework for modeling many

DRs found in the literature, including the EMPs considered in Chapter 2. Using this class,
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the general MSP was transformed into a DR approximation (DRA) problem which has ex-

tremely fewer decisions relative to the original MSP which, for the applications of interest

in this dissertation, could have hundreds of thousands with the standard scenario-based

approach. The DRA was then cast as a decision-rule embedded simulation-optimization

(DR-SO) problem similar to the DR-SO problem analyzed in Chapter 2. However, due

to the generality of the class of DRs proposed, major extensions of the results in Chapter

2 were made to address the issue of discontinuities in this more general DR-SO problem.

First, we defined a smooth-in-expectation decision rule as any decision rule that makes the

expected value function of the DR-SO problem smooth. Then, we developed a new set

of sufficient conditions that guarantees that the proposed class of mixed-integer DRs is

smooth-in-expectation. The new set of conditions involves major extensions of the first set

of conditions developed in Chapter 2 which were made to accommodate state-space MSPs

with chance constraints and discrete state variables, neither of which was possible with the

results developed in Chapter 2. The extension to discrete states is important because such

states are often needed to enforce timing constraints such as minimum uptime/downtime

constraints for process units, which can often be achieved by a suitably constructed DR.

Finally, a strategy was developed that is able to transform any given decision rule of the

proposed class into a smooth-in-expectation decision rule, allowing the new conditions to

be broadly applicable. These results are important because smoothness enables the general

DR-SO problem to be efficiently solved using gradient-based approaches. The significance

of these results was demonstrated using an inventory optimization problem for which we ob-

tained major optimization performance improvements using a trust-region algorithm (which

depends on the DR-SO problem smoothness) relative to gradient-free approaches.

4.2 Recommendations for Future Work

The success of solving the integrated design and operation problems considered in

this dissertation can partly be attributed to the overall theme of using DR-SO formulations
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in which stochastic simulations use a DR to evaluate the expected operational cost of the

system over long-term operation. However, this dissertation leaves significant improvements

that need to be made in order to devise more accurate DR-SO formulations and more

efficient implementations of gradient-based approaches.

First, although Chapter 3 proposed a class of mixed-integer decision rules that is

flexible enough to model many decision rules in the literature, this class can only model

explicit control strategies that are defined by a set of threshold functions. Unfortunately,

such strategies are often criticized for being sub-optimal. This issue is accentuated by the

complexity of system operations in the energy and manufacturing systems of interest in

this dissertation because it makes it practically difficult to devise explicit control strategies

that can compute high-quality operational decisions. Thus, although such explicit control

strategies are computational efficient and can be parametrized and optimized along with the

design decisions, the number of parameters needed can be significantly large, increasing the

size of the corresponding DR-SO problem. In cases there is not enough parameterization,

the DR-SO formulation is likely to provide conservative designs. However, in applications, it

is becoming an increasingly common practice to make operational decisions using advanced

control strategies that involve solving an optimization problem [43, 47]. For example, model

predictive control (MPC) is widely regarded as an advanced control strategy for operating

energy systems such as microgrid and combined heat and power systems [43–45] and for the

dynamic control of complex chemical processes [36, 46, 47]. Such advanced control strategies

are often easy to formulate (e.g. standard MILP formulation) and they offer much more

freedom in modeling system operations and economical benefits relative to explicit control

strategies [70, 131]. Accordingly, there is a huge interest in incorporating advanced control

strategies in the problems of integrated planning and scheduling [59, 132, 133], scheduling

and control [57, 134, 135], and design and control [63, 136–138]. Importantly, for integrated

design and operation problems considered in this dissertation, modeling the operational

details with an advanced control strategy potentially leads to more economical designs

relative to explicit control laws [71]. Thus, a potentially significant future work can explore
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the application of the results developed in Chapter 3 to cases where an advanced control law

is used to approximate MSPs, which is likely to give more accurate DR-SO formulations.

Since such cases are closely related to stochastic multilevel programs (SMLPs) that also arise

in smart manufacturing and energy systems, the main focus could be placed on developing

a tractable solution approach for SMLPs with mixed-integer recourse decisions, which, as

in the case of MSPs, are intractable by any other existing approaches (see Chapter 1 for

details).

Second, although this dissertation lays the theoretical groundwork for the applica-

tion of gradient-based approaches to solve DR-SO problems, it leaves a number of implemen-

tation challenges to be addressed. To lay out these challenges, first recall that the DR-SO

problems of interest in this dissertation involve seeking design decisions θ that minimize an

expected value defined as follows, where `(ω, θ) is the operational cost evaluated through a

decision-rule-embedded stochastic simulation for any fixed θ and uncertainty scenario ω:

L(θ) ≡ E [`(ω, θ)] . (4.1)

The DR-SO problem can be loosely stated (i.e., excluding constraints and investment cost)

as follows:

min
θ∈Θ

L(θ). (4.2)

In general, provided that they are smooth, problems similar to (4.2) are most commonly

solved using stochastic approximation (SA), which is essentially the application of the stan-

dard steepest-descent algorithm with stochastic gradient estimates of L(θ) [139–141]. Since

smoothness of (4.2) is guaranteed by the theoretical results developed in this disserta-

tion, the gradient algorithms used in this dissertation were of SA-type. However, although

more impressive results were obtained relative to gradient-free approaches, the following

challenges were faced and need to be addressed for more efficient implementation of these

approaches:

(i) Recall that for any fixed uncertainty scenario ω, `(ω, ·) is a highly discontinuous func-
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tion of θ due to discontinuous decision rules determining mixed-integer decisions in

the simulation of `(ω, θ). As a consequence, the standard finite difference (FD) ap-

proach based on direct Monte Carlo sampling leads to very high variance estimates of

∇L(θ) = ∇E [`(ω, θ)] due to artificial rare events created by the differencing scheme

(i.e., small perturbations) [142]. Critically, compensating for this high variance re-

quired a very large number of samples, which significantly deteriorates the performance

of SA.

(ii) Although SA guarantees convergence in probability [139], its convergence rate depends

critically on many parameters (e.g., step size for iterate update and scaling matrix

for hessian approximation to avoid ill-conditioning) that have to be tuned. In our

experience with DR-SO problems, this tuning was very strenuous, even for cases with

a modest number of decision variables. Moreover, SA struggled to terminate because

the noise in gradient estimates was magnified in the neighborhood of the local solution.

Unfortunately, we struggled to find an efficient sampling technique to could help with

this issue.

(iii) As discussed above, more accurate DR-SO approximations could be obtained using

advanced decision rules which are based on the solution of auxiliary optimization

problems (e.g., model predictive control) to obtain more accurate operational deci-

sions. Unfortunately, such rules will make simulations very slow due to the repetitive

solution of the auxiliary problems, making the optimization process and the diagnosis

of Challenges (i)–(ii) very time-consuming.

4.2.1 Efficient Computation of Unbiased and Low-Variance Gradient Es-

timates

To address Challenge (i), standard variance reduction techniques, such as the use

of common random numbers, control variates, importance sampling, and conditional ex-

pectation can be adapted to gradient estimation. Note that although these techniques will
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help reduce the variance of stochastic estimates of ∇E [`(ω, θ)], specifically by reducing

the variance of stochastic estimates of E [`(ω, θ)], the effect of the differencing scheme will

not entirely be eliminated and this can possibly be the bottleneck for these techniques.

However, recall that ∇L(θ) = ∇E [`(ω, θ)]. A common way to get around the differencing

scheme is to use sample path estimators which compute ∇`(ω, θ) directly. Unfortunately,

since `(ω, ·) is a discontinuous function of θ, ∇L(θ) = ∇E [`(ω, θ)] 6= E [∇`(ω, θ)], making

sample path estimators, such as infinitesimal perturbation analysis (IPA) and smoothed

IPA, inappropriate [143]. However, let ∇G(θ) = ∇E [`(ω, θ)]− E [∇`(ω, θ)] denote the IPA

error. Accordingly, ∇L(θ) can be written as ∇L(θ) = E [∇`(ω, θ)] +∇G(θ). The work in

Chapter 2 (see appendix) showed that the IPA term E [∇`(ω, θ)] can be written as a vol-

ume integral and the IPA error ∇G(θ) can be expressed as a sum of surface integrals along

the discontinuities of `(ω, ·). Thus, one promising approach is to develop a sampling tech-

nique to estimate this error. Another alternative is to apply a change-of-variables (COV) to

transform the surface integrals into volume integrals which can then be sampled along with

∇`(ω, θ). In fact, some of these ideas have been tried (e.g., conditional expectation, the IPA

and COV techniques) on a specific DR-SO problem and significant reduction were obtained

in the variance of the estimates compared to the standard FD, leading to very substantial

speed-ups in the overall optimization process. However, these ideas were abandoned be-

cause their extension to a much general class of DR-SO problems seemed to be out of scope

of the intended time frame. Additionally, the variance of the COV estimates did not seem

to improve very much over FD. Thus, it would be worthwhile revisiting these techniques

and explore how they can be combined or improved to further reduce their variance and

increase their broader applicability.

4.2.2 Accelerating SA Through Adaptive Techniques

To address Challenge (ii), efforts may be focused on the development of advanced

stochastic gradient descent algorithms that achieve much faster and more reliable conver-

gence through adaptive techniques that automatically generate scaling matrices, step sizes,
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and regularization parameters, and adaptive sampling techniques that effectively focus com-

putational effort near the optimal solution. Note that some of these techniques are available

for smooth deterministic problems. For example, automatic generation of step sizes can be

achieved with line-search and trust-region methods and adaptive estimation of the scaling

matrix (e.g. Hessian estimation) can be achieved with quasi-Newton methods. Although

the adaptation of these methods to stochastic problems is still a nascent area of research,

some effort has already been made. Specifically, it would be worthwhile exploring the appli-

cation of existing stochastic gradient methods predominantly designed for machine learning

problems to DR-SO problems [144] or to devise more effective adaptive strategies for the

existing stochastic trust-region methods [127, 145].

4.2.3 Accelerating Simulations which Embed Auxiliary Optimization

Problems

To address Challenge (iii), research efforts may be directed towards the development

of advanced explicit mixed-integer decision rules which consist of simple function evalua-

tions. Notably, to ensure smoothness of DR-SO problems, such decision rules will need to

be expressed in the mathematical forms proposed in Chapters 2 and 3. Moreover, effective

methods for parameterizing such rules will be needed to ensure comparative performance

with rules that are based on solution of an optimization problem. For example, to obtain an

explicit decision rule whose performance is comparable to that of a model predictive control

(MPC), the explicit rule will need to have parameters that model the predictive capabili-

ties of MPC. As a starting point, it would be worthwhile exploring possible improvements

that could be made on existing application-specific decision rules that are based on priority

lists [16, 146, 147]. Alternatively, multi-parametric programming techniques could be pur-

sued for deriving exact explicit decision rules corresponding to the implicit decision rules

based on solution of an optimization problem [148]. However, note that multi-parametric

programming techniques may give a very large number of expressions that define the ex-

plicit decision rule, especially for large instances of the original optimization problem [10,
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63]. Nonetheless, it would be interesting to explore the difference between the computa-

tional cost of simulations with repetitive solution of an optimization problem and that of

simulations with the explicit multi-parametric programming rule.
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